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A Review of Kernel Methods in Machine
Learning

Thomas Hofmann, Bernhard Schölkopf, Alexander J. Smola

Abstract. We review recent methods for learning with positive definite kernels. All these methods
formulate learning and estimation problems as linear tasks in a reproducing kernel Hilbert space (RKHS)
associated with a kernel. We cover a wide range of methods, ranging from simple classifiers to sophisti-
cated methods for estimation with structured data.
(AMS 2000 subject classifications: primary - 30C40 Kernel functions and applications; secondary -
68T05 Learning and adaptive systems. — Key words: machine learning, reproducing kernels, support
vector machines, graphical models)

1 Introduction

Over the last ten years, estimation and learning methods utilizing positive definite kernels have become
rather popular, particularly in machine learning. Since these methods have a stronger mathematical slant
than earlier machine learning methods (e.g., neural networks), there is also significant interest in the
statistics and mathematics community for these methods. The present review aims to summarize the
state of the art on a conceptual level. In doing so, we build on various sources (including [Vapnik,
1998, Burges, 1998, Cristianini and Shawe-Taylor, 2000, Herbrich, 2002] and in particular [Schölkopf
and Smola, 2002]), but we also add a fair amount of more recent material which helps unifying the
exposition. We have not had space to include proofs; they can be found either in the long version of the
present paper (see Hofmann et al. [2006]), in the references given, or in the above books.

The main idea of all the described methods can be summarized in one paragraph. Traditionally, theory
and algorithms of machine learning and statistics has been very well developed for the linear case. Real
world data analysis problems, on the other hand, often requires nonlinear methods to detect the kind
of dependencies that allow successful prediction of properties of interest. By using a positive definite
kernel, one can sometimes have the best of both worlds. The kernel corresponds to a dot product in a
(usually high dimensional) feature space. In this space, our estimation methods are linear, but as long as
we can formulate everything in terms of kernel evaluations, we never explicitly have to compute in the
high dimensional feature space.

The paper has three main sections: Section 2 deals with fundamental properties ofkernels, with spe-
cial emphasis on (conditionally) positive definite kernels and their characterization. We give concrete
examples for such kernels and discuss kernels and reproducing kernel Hilbert spaces in the context of
regularization. Section 3 presents various approaches for estimating dependencies and analyzing data
that make use of kernels. We provide an overview of the problem formulations as well as their solution
using convex programming techniques. Finally, Section 4 examines the use of reproducing kernel Hilbert
spaces as a means to define statistical models, the focus being on structured, multidimensional responses.
We also show how such techniques can be combined with Markov networks as a suitable framework to
model dependencies between response variables.
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Figure 1: A simple geometric classification algorithm: given two classes of points (depicted by ‘o’ and ‘+’), compute
their meansc+, c− and assign a test inputx to the one whose mean is closer. This can be done by looking at the dot
product betweenx − c (wherec = (c+ + c−)/2) andw := c+ − c−, which changes sign as the enclosed angle
passes throughπ/2. Note that the corresponding decision boundary is a hyperplane (the dotted line) orthogonal tow
(from [Scḧolkopf and Smola, 2002]).

2 Kernels

2.1 An Introductory Example

Suppose we are given empirical data

(x1, y1), . . . , (xn, yn) ∈ X× Y. (1)

Here, the domainX is some nonempty set that theinputs(the predictor variables)xi are taken from; the
yi ∈ Y are calledtargets(the response variable). Here and below,i, j ∈ [n], where we use the notation
[n] :={1, . . . , n}.

Note that we have not made any assumptions on the domainX other than it being a set. In order to
study the problem of learning, we need additional structure. In learning, we want to be able togeneralize
to unseen data points. In the case of binary pattern recognition, given some new inputx ∈ X, we want
to predict the correspondingy ∈ {±1} (more complex output domainsY will be treated below). Loosely
speaking, we want to choosey such that(x, y) is in some sensesimilar to the training examples. To this
end, we need similarity measures inX and in{±1}. The latter is easier, as two target values can only be
identical or different. For the former, we require a function

k : X× X→ R, (x, x′) 7→ k(x, x′) (2)

satisfying, for allx, x′ ∈ X,
k(x, x′) = 〈Φ(x),Φ(x′)〉 , (3)

whereΦ maps into some dot product spaceH, sometimes called thefeature space. The similarity measure
k is usually called akernel, andΦ is called itsfeature map.

The advantage of using such a kernel as a similarity measure is that it allows us to construct al-
gorithms in dot product spaces. For instance, consider the following simple classification algorithm,
where Y = {±1}. The idea is to compute the means of the two classes in the feature space,
c+ = 1

n+

∑
{i:yi=+1} Φ(xi), and c− = 1

n−

∑
{i:yi=−1} Φ(xi), wheren+ andn− are the number of

examples with positive and negative target values, respectively. We then assign a new pointΦ(x) to the
class whose mean is closer to it. This leads to the prediction rule

y = sgn(〈Φ(x), c+〉 − 〈Φ(x), c−〉+ b) (4)
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with b = 1
2

(
‖c−‖2 − ‖c+‖2

)
. Substituting the expressions forc± yields

y = sgn
( 1
n+

∑
{i:yi=+1}

〈Φ(x),Φ(xi)〉︸ ︷︷ ︸
k(x,xi)

− 1
n−

∑
{i:yi=−1}

〈Φ(x),Φ(xi)〉︸ ︷︷ ︸
k(x,xi)

+b
)
, (5)

whereb = 1
2

(
1
n2
−

∑
{(i,j):yi=yj=−1} k(xi, xj)−

1
n2

+

∑
{(i,j):yi=yj=+1} k(xi, xj)

)
.

Let us consider one well-known special case of this type of classifier. Assume that the class means
have the same distance to the origin (henceb = 0), and thatk(·, x) is a density for allx ∈ X. If the two
classes are equally likely and were generated from two probability distributions that are estimated

p+(x) :=
1
n+

∑
{i:yi=+1}

k(x, xi), p−(x) :=
1
n−

∑
{i:yi=−1}

k(x, xi), (6)

then (5) is the estimated Bayes decision rule, plugging in the estimatesp+ andp− for the true densities.
The classifier (5) is closely related to theSupport Vector Machine (SVM)that we will discuss below. It

is linear in the feature space (4), while in the input domain, it is represented by a kernel expansion (5). In
both cases, the decision boundary is a hyperplane in the feature space; however, the normal vectors (for
(4),w = c+ − c−) are usually rather different.1 The normal vector not only characterizes the alignment
of the hyperplane, its length can also be used to construct tests for the equality of the two class-generating
distributions [Borgwardt et al., 2006].

2.2 Positive Definite Kernels

We have required that a kernel satisfy (3), i.e., correspond to a dot product in some dot product space. In
the present section, we show that the class of kernels that can be written in the form (3) coincides with
the class of positive definite kernels. This has far-reaching consequences. There are examples of positive
definite kernels which can be evaluated efficiently even though they correspond to dot products in infinite
dimensional dot product spaces. In such cases, substitutingk(x, x′) for 〈Φ(x),Φ(x′)〉, as we have done
in (5), is crucial. In the machine learning community, this substitution is called thekernel trick.

Definition 1 (Gram matrix) Given a kernelk and inputsx1, . . . , xn ∈ X, then× n matrix

K := (k(xi, xj))ij (7)

is called theGram matrix(or kernel matrix) of k with respect tox1, . . . , xn.

Definition 2 (Positive definite matrix) A realn× n symmetric matrixKij satisfying∑
i,j

cicjKij ≥ 0 (8)

for all ci ∈ R is calledpositive definite. If equality in (8) only occurs forc1 = · · · = cn = 0 then we
shall call the matrixstrictly positive definite.

Definition 3 (Positive definite kernel) Let X be a nonempty set. A functionk : X × X → R which for
all n ∈ N, xi ∈ X, i ∈ [n] gives rise to a positive definite Gram matrix is called apositive definite kernel.
A functionk : X×X→ R which for alln ∈ N and distinctxi ∈ X gives rise to a strictly positive definite
Gram matrix is called astrictly positive definite kernel.

1As an aside, note that if we normalize the targets such thatŷi = yi/|{j : yj = yi}|, in which case thêyi sum to
zero, then‖w‖2 =

〈
K, ŷŷ>

〉
F

, where〈., .〉F is the Frobenius dot product. If the two classes have equal size, then up
to a scaling factor involving‖K‖2 andn, this equals thekernel-target alignmentdefined in [Cristianini et al., 2002].
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Occasionally, we shall refer to positive definite kernels simply as akernels. Note that for simplicity we
have restricted ourselves to the case of real valued kernels. However, with small changes, the below will
also hold for the complex valued case.

Since
∑
i,j cicj 〈Φ(xi),Φ(xj)〉 =

〈∑
i ciΦ(xi),

∑
j cjΦ(xj)

〉
≥ 0, kernels of the form (3) are posi-

tive definite for any choice ofΦ. In particular, ifX is already a dot product space, we may chooseΦ to
be the identity. Kernels can thus be regarded as generalized dot products. Whilst they are not generally
bilinear, they share important properties with dot products, such as the Cauchy-Schwartz inequality:

Proposition 4 If k is a positive definite kernel, andx1, x2 ∈ X, then

k(x1, x2)2 ≤ k(x1, x1) · k(x2, x2). (9)

Proof The2×2 Gram matrix with entriesKij = k(xi, xj) is positive definite. Hence both its eigenvalues
are nonnegative, and so is their product,K ’s determinant, i.e.,

0 ≤ K11K22 −K12K21 = K11K22 −K2
12. (10)

Substitutingk(xi, xj) for Kij , we get the desired inequality.

2.2.1 Construction of the Reproducing Kernel Hilbert Space
We now define a map fromX into the space of functions mappingX into R, denoted asRX, via

Φ : X→ RX wherex 7→ k(·, x). (11)

Here,Φ(x) = k(·, x) denotes the function that assigns the valuek(x′, x) to x′ ∈ X.
We next construct a dot product space containing the images of the inputs underΦ. To this end, we

first turn it into a vector space by forming linear combinations

f(·) =
n∑
i=1

αik(·, xi). (12)

Here,n ∈ N, αi ∈ R andxi ∈ X are arbitrary.

Next, we define a dot product betweenf and another functiong(·) =
∑n′

j=1 βjk(·, x′j) (with n′ ∈ N,
βj ∈ R andx′j ∈ X) as

〈f, g〉 :=
n∑
i=1

n′∑
j=1

αiβjk(xi, x′j). (13)

To see that this is well-defined although it contains the expansion coefficients and points, note that

〈f, g〉 =
∑n′

j=1 βjf(x′j). The latter, however, does not depend on the particular expansion off . Simi-
larly, for g, note that〈f, g〉 =

∑n
i=1 αig(xi). This also shows that〈·, ·〉 is bilinear. It is symmetric, as

〈f, g〉 = 〈g, f〉. Moreover, it is positive definite, since positive definiteness ofk implies that for any
functionf , written as (12), we have

〈f, f〉 =
n∑

i,j=1

αiαjk(xi, xj) ≥ 0. (14)

Next, note that given functionsf1, . . . , fp, and coefficientsγ1, . . . , γp ∈ R, we have

p∑
i,j=1

γiγj 〈fi, fj〉 =

〈
p∑
i=1

γifi,

p∑
j=1

γjfj

〉
≥ 0. (15)
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Here, the equality follows from the bi-linearity of〈·, ·〉, and the right hand inequality from (14).
By (15),〈·, ·〉 is a positive definite kernel, defined on our vector space of functions. For the last step in

proving that it even is a dot product, we note that by (13), for all functions (12),

〈k(·, x), f〉 = f(x), and in particular〈k(·, x), k(·, x′)〉 = k(x, x′). (16)

By virtue of these properties,k is called areproducing kernel[Aronszajn, 1950].
Due to (16) and (9), we have

|f(x)|2 = |〈k(·, x), f〉|2 ≤ k(x, x) · 〈f, f〉. (17)

By this inequality,〈f, f〉 = 0 impliesf = 0, which is the last property that was left to prove in order to
establish that〈., .〉 is a dot product.

Skipping some details, we add that one can complete the space of functions (12) in the norm corre-
sponding to the dot product, and thus gets a Hilbert spaceH, called areproducing kernel Hilbert space
(RKHS).

One can define an RKHS as a Hilbert spaceH of functions on a setX with the property that for all
x ∈ X andf ∈ H, the point evaluationsf 7→ f(x) are continuous linear functionals (in particular, all
point valuesf(x) are well defined, which already distinguishes RKHS’s from manyL2 Hilbert spaces).
From the point evaluation functional, one can then construct the reproducing kernel using the Riesz
representation theorem. The Moore-Aronszajn-Theorem [Aronszajn, 1950] states that for every positive
definite kernel onX× X, there exists a unique RKHS and vice versa.

There is an analogue of the kernel trick for distances rather than dot products, i.e., dissimilarities rather
than similarities. This leads to the larger class ofconditionally positive definite kernels. Those kernels
are defined just like positive definite ones, with the one difference being that their Gram matrices need to
satisfy (8) only subject to

n∑
i=1

ci = 0. (18)

Interestingly, it turns out that many kernel algorithms, including SVMs and kernel PCA (see Section 3),
can be applied also with this larger class of kernels, due to their being translation invariant in feature
space [Scḧolkopf and Smola, 2002, Hein et al., 2005].

We conclude this section with a note on terminology. In the early years of kernel machine learning
research, it was not the notion of positive definite kernels that was being used. Instead, researchers
considered kernels satisfying the conditions of Mercer’s theorem [Mercer, 1909], see e.g. Vapnik [1998]
and Cristianini and Shawe-Taylor [2000]. However, whilst all such kernels do satisfy (3), the converse is
not true. Since (3) is what we are interested in, positive definite kernels are thus the right class of kernels
to consider.

2.2.2 Properties of Positive Definite Kernels

We begin with some closure properties of the set of positive definite kernels.

Proposition 5 Below,k1, k2, . . . are arbitrary positive definite kernels onX×X, whereX is a nonempty
set.
(i) The set of positive definite kernels is a closed convex cone, i.e., (a) ifα1, α2 ≥ 0, thenα1k1 + α2k2 is
positive definite; and (b) Ifk(x, x′) := limn→∞ kn(x, x′) exists for allx, x′, thenk is positive definite.
(ii) The pointwise productk1k2 is positive definite.
(iii) Assume that fori = 1, 2, ki is a positive definite kernel onXi×Xi, whereXi is a nonempty set. Then
the tensor productk1⊗k2 and the direct sumk1⊕k2 are positive definite kernels on(X1×X2)×(X1×X2).
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The proofs can be found in Berg et al. [1984]. We only give a short proof of (ii), a result due to Schur
(see e.g., Berg and Forst [1975]). Denote byK,L the positive definite Gram matrices ofk1, k2 with
respect to some data setx1, . . . , xn. Being positive definite, we can expressL asSS> in terms of an
n× n matrixS (e.g., the positive definite square root ofL). We thus have

Lij =
n∑

m=1

SimSjm, (19)

and therefore, for anyc1, . . . , cn ∈ R,

n∑
i,j=1

cicjKijLij =
n∑

i,j=1

cicjKij

n∑
m=1

SimSjm =
n∑

m=1

n∑
i,j=1

(ciSim)(cjSjm)Kij ≥ 0, (20)

where the inequality follows from (8).
It is reassuring that sums and products of positive definite kernels are positive definite. We will now

explain that, loosely speaking, there are no other operations that preserve positive definiteness. To this
end, letC denote the set of all functionsψ : R → R that map positive definite kernels to (conditionally)
positive definite kernels (readers who are not interested in the case of conditionally positive definite
kernels may ignore the term in parentheses). We define

C := {ψ | k is a positive definite kernel⇒ ψ(k) is a (conditionally) positive definite kernel}.

Moreover, define

C ′ = {ψ | for any Hilbert spaceF, ψ(〈x, x′〉F) is (conditionally) positive definite}

and

C ′′ = {ψ | for all n ∈ N : K is a positive definiten× n matrix ⇒ ψ(K) is (conditionally) positive definite},

whereψ(K) is then× n matrix with elementsψ(Kij).

Proposition 6 C = C’ = C”

Proof Let ψ ∈ C. For any Hilbert spaceF, 〈x, x′〉F is positive definite, thusψ(〈x, x′〉F) is (condition-
ally) positive definite. Henceψ ∈ C ′.

Next, assumeψ ∈ C ′. Consider, forn ∈ N, an arbitrary positive definiten × n-matrixK. We can
expressK as the Gram matrix of somex1, . . . , xn ∈ Rn, i.e.,Kij = 〈xi, xj〉Rn . Sinceψ ∈ C ′, we
know thatψ(〈x, x′〉Rn) is a (conditionally) positive definite kernel, hence in particular the matrixψ(K)
is (conditionally) positive definite, thusψ ∈ C ′′.

Finally, assumeψ ∈ C ′′. Let k be a positive definite kernel,n ∈ N, c1, . . . , cn ∈ R, andx1, . . . , xn ∈
X. Then ∑

ij

cicjψ(k(xi, xj)) =
∑
ij

cicj(ψ(K))ij ≥ 0 (21)

(for
∑
i ci = 0), where the inequality follows fromψ ∈ C ′′. Therefore,ψ(k) is (conditionally) positive

definite, and henceψ ∈ C.

The following proposition follows from a result of FitzGerald et al. [1995] for (conditionally) positive
definite matrices; by Proposition 6, it also applies for (conditionally) positive definite kernels, and for
functions of dot products. We state the latter case.
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Proposition 7 Letψ : R → R. Thenψ(〈x, x′〉F) is positive definite for any Hilbert spaceF if and only
if ψ is real entire of the form

ψ(t) =
∞∑
n=0

ant
n (22)

with an ≥ 0 for n ≥ 0.
Moreover,ψ(〈x, x′〉F) is conditionally positive definite for any Hilbert spaceF if and only ifψ is real

entire of the form (22) withan ≥ 0 for n ≥ 1.

There are further properties ofk that can be read off the coefficientsan.

• Steinwart [2002a] showed that if allan are strictly positive, then the kernel of Proposition 7 is
universalon every compact subsetS of Rd in the sense that its RKHS is dense in the space of
continuous functions onS in the‖.‖∞ norm. For support vector machines using universal kernels,
he then shows (universal) consistency [Steinwart, 2002b]. Examples of universal kernels are (23)
and (24) below.
• In Lemma 13, we will show that thea0 term does not affect an SVM. Hence we infer that it is

actually sufficient for consistency to havean > 0 for n ≥ 1.

• Let IevenandIodd denote the sets of even and odd incidesi with the property thatai > 0, respectively.
Pinkus [2004] showed that for anyF, the kernel of Proposition 7 is strictly positive definite if and
only if a0 > 0 and neitherIevennorIodd is finite.2 Moreover, he states that the necessary and sufficient
conditions for universality of the kernel are that in addition both

∑
i∈Ieven

1
i and

∑
i∈Iodd

1
i diverge.

While the proofs of the above statements are fairly involved, one can make certain aspects plau-
sible using simple arguments. For instance [Pinkus, 2004], supposek is not strictly positive def-
inite. Then we know that for somec 6= 0 we have

∑
ij cicjk(xi, xj) = 0. This means that〈∑

i cik(xi, ·),
∑
j cjk(xj , ·)

〉
= 0, implying that

∑
i cik(xi, ·) = 0. For anyf =

∑
j αjk(xj , ·),

this implies that
∑
i cif(xi) =

〈∑
i cik(xi, ·),

∑
j αjk(xj , ·)

〉
= 0. This equality thus holds for any

function in the RKHS. Therefore, the RKHS cannot lie dense in the space of continuous functions onX,
andk is thus not universal.

We thus know that ifk is universal, it is necessarily strictly positive definite. The latter, in turn, implies
that its RKHSH is infinite dimensional, since otherwise the maximal rank of the Gram matrix ofk with
respect to a data set inH would equal its dimensionality. If we assume thatF is finite dimensional, then
infinite dimensionality ofH implies that infinitely many of theai in (22) must be strictly positive. If only
finitely many of theai in (22) were positive, we could construct the feature spaceH of ψ(〈x, x′〉) by
taking finitely many tensor products and (scaled) direct sums of copies ofF, andH would be finite.3 We
conclude the section with an example of a kernel which is positive definite by Proposition 7. To this end,
let X be a dot product space. The power series expansion ofψ(x) = ex then tells us that

k(x, x′) = e
〈x,x′〉

σ2 (23)

2One might be tempted to think that given some strictly positive definite kernelk with feature mapΦ and feature
spaceH, we could setF to equalH and considerψ(〈Φ(x),Φ(x′)〉H). In this case, it would seem that choosing
a1 = 1 andan = 0 for n 6= 1 should give us a strictly positive definite kernel which violates Pinkus’ conditions.
However, the latter kernel is only strictly positive definite onΦ(X), which is a weaker statement than it being strictly
positive definite on all ofH.

3Recall that the dot product ofF ⊗ F is the square of the original dot product, and the one ofF ⊕ F′, whereF′

is another dot product space, is the sum of the original dot products.
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is positive definite [Haussler, 1999]. If we further multiplyk with the positive definite kernelf(x)f(x′),

wheref(x) = e−
‖x‖2

2 σ2 andσ > 0, this leads to the positive definiteness of the Gaussian kernel

k′(x, x′) = k(x, x′)f(x)f(x′) = e−
‖x−x′‖2

2 σ2 . (24)

2.2.3 Properties of Positive Definite Functions

We now letX = Rd and consider positive definite kernels of the form

k(x, x′) = h(x− x′), (25)

in which caseh is called apositive definite function. The following characterization is due to Bochner
[1933], see also Rudin [1962]. We state it in the form given by Wendland [2005].

Theorem 8 A continuous functionh onRd is positive definite if and only if there exists a finite nonnega-
tive Borel measureµ onRd such that

h(x) =
∫

Rd

e−i〈x,ω〉 dµ(ω). (26)

Whilst normally formulated for complex valued functions, the theorem also holds true for real functions.
Note, however, that if we start with an arbitrary nonnegative Borel measure, its Fourier transform may
not be real. Real valued positive definite functions are distinguished by the fact that the corresponding
measuresµ are symmetric.

We may normalizeh such thath(0) = 1 (hence by (9)|h(x)| ≤ 1), in which caseµ is a probabil-
ity measure andh is its characteristic function. For instance, ifµ is a normal distribution of the form

(2π/σ2)−d/2e−
σ2‖ω‖2

2 dω, then the corresponding positive definite function is the Gaussiane−
‖x‖2

2σ2 , cf.
(24).

Bochner’s theorem allows us to interpret the similarity measurek(x, x′) = h(x− x′) in the frequency
domain. The choice of the measureµ determines which frequency components occur in the kernel. Since
the solutions of kernel algorithms will turn out to be finite kernel expansions, the measureµ will thus
determine which frequencies occur in the estimates, i.e., it will determine their regularization properties
— more on that in Section 2.3.3 below.

A proof of the theorem can be found for instance in Rudin [1962]. One part of the theorem is easy to
prove: ifh takes the form (26), then

∑
ij

aiajh(xi − xj) =
∑
ij

aiaj

∫
Rd

e−i〈xi−xj ,ω〉 dµ(ω) =
∫

Rd

∣∣∣∣∣∑
i

aie
−i〈xi,ω〉

∣∣∣∣∣
2

dµ(ω) ≥ 0. (27)

Bochner’s theorem generalizes earlier work of Mathias, and has itself been generalized in various ways,
e.g. by Schoenberg [1938]. An important generalization considers Abelian semigroups (e.g., Berg et al.
[1984]). In that case, the theorem provides an integral representation of positive definite functions in
terms of the semigroup’s semicharacters. Further generalizations were given by Krein, for the cases of
positive definite kernels and functions with a limited number of negative squares (see Stewart [1976] for
further details and references).

As above, there are conditions that ensure that the positive definiteness becomes strict.

Proposition 9 [Wendland, 2005] A positive definite function is strictly positive definite if the carrier of
the measure in its representation (26) contains an open subset.
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This implies that the Gaussian kernel is strictly positive definite.
An important special case of positive definite functions, which includes the Gaussian, areradial basis

functions. These are functions that can be written ash(x) = g(‖x‖2) for some functiong : [0,∞[→ R.
They have the property of being invariant under the Euclidean group. If we would like to have the
additional property of compact support, which is computationally attractive in a number of large scale
applications, the following result becomes relevant.

Proposition 10 [Wendland, 2005] Assume thatg : [0,∞[→ R is continuous and compactly supported.
Thenh(x) = g(‖x‖2) cannot be positive definite on everyRd.

2.2.4 Examples of Kernels
We have already seen several instances of positive definite kernels, and now intend to complete our

selection with a few more examples. In particular, we discuss polynomial kernels, convolution kernels,
ANOVA expansions, and kernels on documents.

Polynomial Kernels From Proposition 5 it is clear that homogeneous polynomial kernelsk(x, x′) =
〈x, x′〉p are positive definite forp ∈ N andx, x′ ∈ Rd. By direct calculation we can derive the corre-
sponding feature map [Poggio, 1975]

〈x, x′〉p =

 d∑
j=1

[x]j [x′]j

p

=
∑
j∈[d]p

[x]j1 · · · · · [x]jp · [x′]j1 · · · · · [x′]jp = 〈Cp(x), Cp(x′)〉 , (28)

whereCp mapsx ∈ Rd to the vectorCp(x) whose entries are all possiblep-th degree ordered products
of the entries ofx (note that[d] is used as a shorthand for{1, . . . , d}). The polynomial kernel of degreep
thus computes a dot product in the space spanned by all monomials of degreep in the input coordinates.
Other useful kernels include the inhomogeneous polynomial,

k(x, x′) = (〈x, x′〉+ c)p wherep ∈ N andc ≥ 0, (29)

which computes all monomials up to degreep.

Spline Kernels It is possible to obtain spline functions as a result of kernel expansions [Smola, 1996,
Vapnik et al., 1997] simply by noting that convolution of an even number of indicator functions yields a
positive kernel function. Denote byIX the indicator (or characteristic) function on the setX, and denote
by ⊗ the convolution operation,(f ⊗ g)(x) :=

∫
Rd f(x′)g(x′ − x)dx′. Then the B-spline kernels are

given by

k(x, x′) = B2p+1(x− x′) wherep ∈ N with Bi+1 := Bi ⊗B0. (30)

HereB0 is the characteristic function on the unit ball4 in Rd. From the definition of (30) it is obvious that
for oddm we may writeBm as inner product between functionsBm/2. Moreover, note that for evenm,
Bm is not a kernel.

Convolutions and Structures Let us now move to kernels defined on structured objects [Haussler,
1999, Watkins, 2000]. Suppose the objectx ∈ X is composed ofxp ∈ Xp, wherep ∈ [P ] (note that the
setsXp need not be equal). For instance, consider the stringx = ATG, andP = 2. It is composed of the
partsx1 = AT andx2 = G, or alternatively, ofx1 = A andx2 = TG. Mathematically speaking, the set
of “allowed” decompositions can be thought of as arelationR(x1, . . . , xP , x), to be read as “x1, . . . , xP
constitute the composite objectx.”

4Note that inR one typically usesI[− 1
2 , 1

2 ].
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Haussler [1999] investigated how to define a kernel between composite objects by building on similar-
ity measures that assess their respectiveparts; in other words, kernelskp defined onXp ×Xp. Define the
R-convolutionof k1, . . . , kP as

[k1 ? · · · ? kP ] (x, x′) :=
∑

x̄∈R(x),x̄′∈R(x′)

P∏
p=1

kp(x̄p, x̄′p), (31)

where the sum runs over all possible waysR(x) andR(x′) in which we can decomposex into x̄1, . . . , x̄P
andx′ analogously.5 If there is only a finite number of ways, the relationR is called finite. In this case,
it can be shown that theR-convolution is a valid kernel [Haussler, 1999].

ANOVA Kernels Specific examples of convolution kernels are Gaussians and ANOVA kernels [Wahba,
1990, Vapnik, 1998]. To construct an ANOVA kernel, we considerX = SN for some setS, and kernels
k(i) onS × S, wherei = 1, . . . , N . ForP = 1, . . . , N , theANOVA kernel of orderP is defined as

kP (x, x′) :=
∑

1≤i1<···<iP≤N

P∏
p=1

k(ip)(xip , x
′
ip). (32)

Note that ifP = N , the sum consists only of the term for which(i1, . . . , iP ) = (1, . . . , N), andk equals
the tensor productk(1) ⊗ · · · ⊗ k(N). At the other extreme, ifP = 1, then the products collapse to one
factor each, andk equals the direct sumk(1) ⊕ · · · ⊕ k(N). For intermediate values ofP , we get kernels
that lie in between tensor products and direct sums.

ANOVA kernels typically use some moderate value ofP , which specifies the order of the interactions
between attributesxip that we are interested in. The sum then runs over the numerous terms that take
into account interactions of orderP ; fortunately, the computational cost can be reduced toO(Pd) cost by
utilizing recurrent procedures for the kernel evaluation. ANOVA kernels have been shown to work rather
well in multi-dimensional SV regression problems [Stitson et al., 1999].

Brownian Bridge and Related Kernels The Brownian bridge kernelmin(x, x′) defined onR likewise
is a positive kernel. Note that one-dimensional linear spline kernels with an infinite number of nodes
[Vapnik et al., 1997] forx, x′ ∈ R+

0 are given by

k(x, x′) =
min(x, x′)3

3
+

min(x, x′)2|x− x′|
2

+ 1 + xx′. (33)

These kernels can be used as basis functionsk(n) in ANOVA expansions. Note that it is advisable to use
ak(n) which never or rarely takes the value zero, since a single zero term would eliminate the product in
(32).

Bag of Words One way in which SVMs have been used for text categorization [Joachims, 2002] is
thebag-of-wordsrepresentation. This maps a given text to a sparse vector, where each component cor-
responds to a word, and a component is set to one (or some other number) whenever the related word
occurs in the text. Using an efficient sparse representation, the dot product between two such vectors
can be computed quickly. Furthermore, this dot product is by construction a valid kernel, referred to as
a sparse vector kernel. One of its shortcomings, however, is that it does not take into account the word
ordering of a document. Other sparse vector kernels are also conceivable, such as one that maps a text to
the set of pairs of words that are in the same sentence [Joachims, 1998, Watkins, 2000], or those which
look only at pairs of words within a certain vicinity with respect to each other [Sim, 2001].

5We use the convention that an empty sum equals zero, hence if eitherx or x′ cannot be decomposed, then
(k1 ? · · · ? kP )(x, x′) = 0.
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n-grams and Suffix Trees A more sophisticated way of dealing with string data was proposed
[Watkins, 2000, Haussler, 1999]. The basic idea is as described above for general structured objects
(31): Compare the strings by means of the substrings they contain. The more substrings two strings have
in common, the more similar they are. The substrings need not always be contiguous; that said, the fur-
ther apart the first and last element of a substring are, the less weight should be given to the similarity.
Depending on the specific choice of a similarity measure it is possible to define more or less efficient
kernels which compute the dot product in the feature space spanned byall substrings of documents.

Consider a finite alphabetΣ, the set of all strings of lengthn, Σn, and the set of all finite strings,
Σ∗ := ∪∞n=0Σ

n. The length of a strings ∈ Σ∗ is denoted by|s|, and its elements bys(1) . . . s(|s|); the
concatenation ofs andt ∈ Σ∗ is writtenst. Denote by

k(x, x′) =
∑
s

#(x, s)#(x′, s)cs

a string kernel computed from exact matches. Here#(x, s) is the number of occurrences ofs in x and
cs ≥ 0.

Vishwanathan and Smola [2004] provide an algorithm using suffix trees, which allows one to compute
for arbitrarycs the value of the kernelk(x, x′) in O(|x|+ |x′|) time and memory. Moreover, alsof(x) =
〈w,Φ(x)〉 can be computed inO(|x|) time if preprocessing linear in the size of the support vectors is
carried out. These kernels are then applied to function prediction (according to the gene ontology) of
proteins using only their sequence information. Another prominent application of string kernels is in the
field of splice form prediction and gene finding Rätsch et al. [2007].

For inexact matches of a limited degree, typically up toε = 3, and strings of bounded length a similar
data structure can be built by explicitly generating a dictionary of strings and their neighborhood in
terms of a Hamming distance [Leslie et al., 2002b,a]. These kernels are defined by replacing#(x, s)
by a mismatch function#(x, s, ε) which reports the number of approximate occurrences ofs in x. By
trading off computational complexity with storage (hence the restriction to small numbers of mismatches)
essentially linear-time algorithms can be designed. Whether a general purpose algorithm exists which
allows for efficient comparisons of strings with mismatches in linear time is still an open question. Tools
from approximate string matching [Navarro and Raffinot, 1999, Cole and Hariharan, 2000, Gusfield,
1997] promise to be of help in this context.

Mismatch Kernels In the general case it is only possible to find algorithms whose complexity is linear
in the lengths of the documents being compared, and the length of the substrings, i.e.O(|x| · |x′|) or
worse. We now describe such a kernel with a specific choice of weights [Watkins, 2000, Cristianini and
Shawe-Taylor, 2000].

Let us now form subsequencesu of strings. Given an index sequencei := (i1, . . . , i|u|) with 1 ≤ i1 <
· · · < i|u| ≤ |s|, we defineu := s(i) := s(i1) . . . s(i|u|). We calll(i) := i|u| − i1 + 1 the length of the
subsequence ins. Note that ifi is not contiguous, thenl(i) > |u|.

The feature space built from strings of lengthn is defined to beHn := R(Σn). This notation means
that the space has one dimension (or coordinate) for each element ofΣn, labelled by that element (equiv-
alently, we can think of it as the space of all real-valued functions onΣn). We can thus describe the
feature map coordinate-wise for eachu ∈ Σn via

[Φn(s)]u :=
∑

i:s(i)=u

λl(i). (34)

Here,0 < λ ≤ 1 is a decay parameter: The larger the length of the subsequence ins, the smaller the
respective contribution to[Φn(s)]u. The sum runs over all subsequences ofs which equalu.
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For instance, consider a dimension ofH3 spanned (that is, labelled) by the stringasd . In this case, we
have[Φ3(Nasdaq)]asd = λ3, while [Φ3(lass das)]asd = 2λ5.6 The kernel induced by the mapΦn takes
the form

kn(s, t) =
∑
u∈Σn

[Φn(s)]u[Φn(t)]u =
∑
u∈Σn

∑
(i,j):s(i)=t(j)=u

λl(i)λl(j). (35)

To describe the actual computation ofkn, define

k′i(s, t) :=
∑
u∈Σi

∑
(i,j):s(i)=t(j)=u

λ|s|+|t|−i1−j1+2, for i = 1, . . . , n− 1. (36)

Usingx ∈ Σ1, we then have the following recursions, which allow the computation ofkn(s, t) for all
n = 1, 2, . . . (note that the kernels are symmetric):

k′0(s, t) = 1 for all s, t

k′i(s, t) = 0 if min(|s|, |t|) < i

ki(s, t) = 0 if min(|s|, |t|) < i

k′i(sx, t) = λk′i(s, t) +
∑
j:tj=x

k′i−1(s, t[1, . . . , j − 1])λ|t|−j+2, i = 1, . . . , n− 1

kn(sx, t) = kn(s, t) +
∑
j:tj=x

k′n−1(s, t[1, . . . , j − 1])λ2 (37)

The string kernelkn can be computed using dynamic programming, see Watkins [2000], Lodhi et al.
[2000], and Durbin et al. [1998].

The above kernels on string, suffix-tree, mismatch and tree kernels have been used in sequence analysis.
This includes applications in document analysis and categorization, spam filtering, function prediction in
proteins, annotations of dna sequences for the detection of introns and exons, named entity tagging of
documents, and the construction of parse trees.

Locality Improved Kernels It is possible to adjust kernels to the structure of spatial data. Recall the
Gaussian RBF and polynomial kernels. When applied to an image, it makes no difference whether one
uses asx the image or a version ofx where all locations of the pixels have been permuted. This indicates
that function space onX induced byk does not take advantage of thelocality properties of the data.

By taking advantage of the local structure, estimates can be improved. On biological sequences [Zien
et al., 2000] one may assign more weight to the entries of the sequence close to the location where
estimates should occur.

For images, local interactions between image patches need to be considered. One way is to use the
pyramidal kernel [Scḧolkopf, 1997, DeCoste and Schölkopf, 2002]. It takes inner products between
corresponding image patches, then raises the latter to some powerp1, and finally raises their sum to
another powerp2. While the overall degree of this kernel isp1p2, the first factorp1 only captures short
range interactions.

Tree Kernels We now discuss similarity measures on more structured objects. For trees Collins and
Duffy [2001] propose a decomposition method which maps a treex into its set of subtrees. The kernel
between two treesx, x′ is then computed by taking a weighted sum of all terms between both trees. In
particular, Collins and Duffy [2001] show a quadratic time algorithm, i.e.O(|x| · |x′|) to compute this
expression, where|x| is the number of nodes of the tree. When restricting the sum to all proper rooted
subtrees it is possible to reduce the computational cost toO(|x|+ |x′|) time by means of a tree to string
conversion [Vishwanathan and Smola, 2004].

6In the first string,asd is a contiguous substring. In the second string, it appears twice as a non-contiguous
substring of length5 in lass das , the two occurrences arelas s d as andla ss das .
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Graph Kernels Graphs pose a twofold challenge: one may both design a kernelonvertices of them and
also a kernelbetweenthem. In the former case, the graph itself becomes the object defining the metric
between the vertices. See Gärtner [2003], Kashima et al. [2004], and Kashima et al. [2003] for details
on the latter. In the following we discuss kernelsongraphs.

Denote byW ∈ Rn×n the adjacency matrix of a graph withWij > 0 if an edge betweeni, j exists.
Moreover, assume for simplicity that the graph is undirected, that isW> = W (see Zhou et al. [2005] for
extensions to directed graphs). Denote byL = D−W the graph Laplacian and bỹL = 1−D− 1

2WD− 1
2

the normalized graph Laplacian. HereD is a diagonal matrix withDii =
∑
jWij denoting the degree of

vertexi.
Fiedler [1973] showed that the second largest eigenvector ofL approximately decomposes the graph

into two parts according to their sign. The other large eigenvectors partition the graph into correspond-
ingly smaller portions.L arises from the fact that for a functionf defined on the vertices of the graph∑
i,j(f(i)− f(j))2 = 2f>Lf .
Finally, Smola and Kondor [2003] show that under mild conditions and up to rescaling,L is the only

quadratic permutation invariant form which can be obtained as a linear function ofW .
Hence it is reasonable to consider kernel matricesK obtained fromL (and L̃). Smola and Kondor

[2003] suggest kernelsK = r(L) or K = r(L̃), which have desirable smoothness properties. Here
r : [0,∞)→ [0,∞) is a monotonically decreasing function. Popular choices include

r(ξ) = exp(−λξ) diffusion kernel (38)

r(ξ) = (ξ + λ)−1 regularized graph Laplacian (39)

r(ξ) = (λ− ξ)p p-step random walk (40)

whereλ > 0 is chosen such as to reflect the amount of diffusion in (38), the degree of regularization in
(39), or the weighting of steps within a random walk (40) respectively. Eq. (38) was proposed by Kondor
and Lafferty [2002]. In Section 2.3.3 we will discuss the connection between regularization operators and
kernels inRn. Without going into details, the functionr(ξ) describes the smoothness properties on the
graph andL plays the role of the Laplace operator.

Kernels on Sets and SubspacesWhenever each observationxi consists of asetof instances we may
use a range of methods to capture the specific properties of these sets (for an overview, see Vishwanathan
et al. [2006]):

• take the average of the elements of the set in feature space, that is,φ(xi) = 1
n

∑
j φ(xij) [Gärtner

et al., 2002]. This yields good performance in the area of multi-instance learning.
• Jebara and Kondor [2003] extend the idea by dealing with distributionspi(x) such thatφ(xi) =

E [φ(x)] wherex ∼ pi(x). They apply it to image classification with missing pixels.
• Alternatively, one can study angles enclosed bysubspacesspanned by the observations [Wolf and

Shashua, 2003, Martin, 2000, Cock and Moor, 2002]. In a nutshell, ifU,U ′ denote the orthogonal
matrices spanning the subspaces ofx andx′ respectively, thenk(x, x′) = detU>U ′.
• Vishwanathan et al. [2006] extend this to arbitrary compound matrices (i.e. matrices composed of

subdeterminants of matrices) and dynamical systems. Their result exploits the Binet Cauchy theo-
rem which states that compound matrices are a representation of the matrix group, i.e.Cq(AB) =
Cq(A)Cq(B). This leads to kernels of the formk(x, x′) = trCq(AB). Note that forq = dimA we
recover the determinant kernel of Wolf and Shashua [2003].

Fisher Kernels Jaakkola and Haussler [1999] have designed kernels building on probability density
modelsp(x|θ). Denote by

Uθ(x) := −∂θ log p(x|θ) (41)

I := Ex
[
Uθ(x)U>θ (x)

]
(42)
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the Fisher scores and the Fisher information matrix respectively. Note that for maximum likelihood
estimatorsEx [Uθ(x)] = 0 and thereforeI is the covariance ofUθ(x). The Fisher kernel is defined as

k(x, x′) := U>θ (x)I−1Uθ(x′) or k(x, x′) := U>θ (x)Uθ(x′) (43)

depending on whether whether we study the normalized or the unnormalized kernel respectively.
In addition to that, it has several attractive theoretical properties: Oliver et al. [2000] show that esti-

mation using the normalized Fisher kernel corresponds to estimation subject to a regularization on the
L2(p(·|θ)) norm.

Moreover, in the context of exponential families (see Section 5.1 for a more detailed discussion) where
p(x|θ) = exp(〈φ(x), θ〉 − g(θ)) we have

k(x, x′) = [φ(x)− ∂θg(θ)] [φ(x′)− ∂θg(θ)] . (44)

for the unnormalized Fisher kernel. This means that up to centering by∂θg(θ) the Fisher kernel is identi-
cal to the kernel arising from the inner product of the sufficient statisticsφ(x). This is not a coincidence.
In fact, in our analysis of nonparametric exponential families we will encounter this fact several times
(cf. Section 5 for further details). Moreover, note that the centering is immaterial, as can be seen in
Lemma 13.

The above overview of kernel design is by no means complete. The reader is referred to books of
Cristianini and Shawe-Taylor [2000], Schölkopf and Smola [2002], Joachims [2002], Herbrich [2002],
Scḧolkopf et al. [2004], Shawe-Taylor and Cristianini [2004], Bakir et al. [2007] for further examples and
details.

2.3 Kernel Function Classes

2.3.1 The Representer Theorem
From kernels, we now move to functions that can be expressed in terms of kernel expansions. The

representer theorem [Kimeldorf and Wahba, 1971, Cox and O’Sullivan, 1990] shows that solutions of a
large class of optimization problems can be expressed as kernel expansions over the sample points. We
present a slightly more general version of the theorem with a simple proof [Schölkopf et al., 2001]. As
above,H is the RKHS associated to the kernelk.

Theorem 11 (Representer Theorem)Denote byΩ : [0,∞) → R a strictly monotonic increasing func-
tion, byX a set, and byc : (X × R2)n → R ∪ {∞} an arbitrary loss function. Then each minimizer
f ∈ H of the regularized risk functional

c ((x1, y1, f(x1)) , . . . , (xn, yn, f(xn))) + Ω
(
‖f‖2H

)
(45)

admits a representation of the form

f(x) =
n∑
i=1

αik(xi, x). (46)

Proof We decompose anyf ∈ H into a part contained in the span of the kernel functions
k(x1, ·), · · · , k(xn, ·), and one in the orthogonal complement;

f(x) = f‖(x) + f⊥(x) =
n∑
i=1

αik(xi, x) + f⊥(x). (47)

Hereαi ∈ R andf⊥ ∈ H with 〈f⊥, k(xi, ·)〉H = 0 for all i ∈ [n] := {1, . . . , n}. By (16) we may write
f(xj) (for all j ∈ [n]) as

f(xj) = 〈f(·), k(xj , ·)〉 =
n∑
i=1

αik(xi, xj) + 〈f⊥(·), k(xj , ·)〉H =
n∑
i=1

αik(xi, xj). (48)
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Second, for allf⊥,

Ω(‖f‖2H) = Ω

∥∥∥∥∥
n∑
i

αik(xi, ·)

∥∥∥∥∥
2

H

+ ‖f⊥‖2H

 ≥ Ω

∥∥∥∥∥
n∑
i

αik(xi, ·)

∥∥∥∥∥
2

H

 . (49)

Thus for any fixedαi ∈ R the risk functional (45) is minimized forf⊥ = 0. Since this also has to hold
for the solution, the theorem holds.

Monotonicity of Ω does not prevent the regularized risk functional (45) from having multiple local
minima. To ensure a global minimum, we would need to require convexity. If we discard the strictness of
the monotonicity, then it no longer follows that each minimizer of the regularized risk admits an expansion
(46); it still follows, however, that there is always another solution that is as good, and thatdoesadmit the
expansion.

The significance of the Representer Theorem is that although we might be trying to solve an optimiza-
tion problem in an infinite-dimensional spaceH, containing linear combinations of kernels centered on
arbitrary points ofX, it states that the solution lies in the span ofn particular kernels — those centered
on the training points. We will encounter (46) again further below, where it is called theSupport Vector
expansion. For suitable choices of loss functions, many of theαi often equal0.

2.3.2 Reduced Set Methods

Despite the finiteness of the representation in (46) it can often be the case that the number of terms in
the expansion is too large in practice. This can be problematic in practical applications, since the time
required to evaluate (46) is proportional to the number of terms. To deal with this issue, we thus need
to express or at least approximate (46) using a smaller number of terms. Exact expressions in a reduced
number of basis points are often not possible; e.g., if the kernel is strictly positive definite and the data
pointsx1, . . . , xn are distinct, then no exact reduction is possible. For the purpose of approximation, we
need to decide on a discrepancy measure that we want to minimize. The most natural such measure is
the RKHS norm. From a practical point of view, this norm has the advantage that it can be computed
using evaluations of the kernel function which opens the possibility for relatively efficient approximation
algorithms. Clearly, if we were given a set of pointsz1, . . . , zm such that the function (cf. (46))

f =
n∑
i=1

αik(xi, ·). (50)

can be expressed with small RKHS-error in the subspace spanned byk(z1, ·), . . . , k(zm, ·), then we can
compute anm-term approximation off by projection onto that subspace.

The problem thus reduces to the choice of the expansion pointsz1, . . . , zm. In the literature, two
classes of methods have been pursued. In the first, it is attempted to choose the points as a subset of some
larger setx1, . . . , xn, which is usually the training set [Schölkopf, 1997, Frieß and Harrison, 1998]. In
the second, we compute the difference in the RKHS between (50) and thereduced set expansion[Burges,
1996]

g =
m∑
p=1

βpk(zp, ·), (51)

leading to

‖f − g‖2 =
n∑

i,j=1

αiαjk(xi, xj) +
m∑

p,q=1

βpβqk(zp, zq)− 2
n∑
i=1

m∑
p=1

αiβpk(xi, zp). (52)

15



To obtain thez1, . . . , zm andβ1, . . . , βm, we can minimize this objective function, which for most kernels
will be a nonconvex optimization problem. Specialized methods for specific kernels exist, as well as
iterative methods taking into account the fact that given thez1, . . . , zm, the coefficientsβ1, . . . , βm can
be computed in closed form. See Schölkopf and Smola [2002] for further details.

Once we have constructed or selected a set of expansion points, we are working in a finite dimensional
subspace ofH spanned by these points.

It is known that each closed subspace of an RKHS is itself an RKHS. Denote its kernel byl, then the
projectionP onto the subspace is given by (e.g., Meschkowski [1962])

(Pf)(x′) = 〈f, l(·, x′)〉 . (53)

If the subspace is spanned by a finite set of linearly independent kernelsk(·, z1), . . . , k(·, zm), the
kernel of the subspace takes the form

km(x, x′) = (k(x, z1), . . . , k(x, zm))K−1 (k(x′, z1), . . . , k(x′, zm))> , (54)

whereK is the Gram matrix ofk with respect toz1, . . . , zm. This can be seen by noting that (i) the
km(·, x) span anm-dimensional subspace, and (ii) we havekm(zi, zj) = k(zi, zj) for i, j = 1, . . . ,m.
The kernel of the subspace’s orthogonal complement, on the other hand, isk − km.

The projection onto them-dimensional subspace can be written

P =
m∑

i,j=1

(
K−1

)
ij
k(·, zi)k(·, zj)>, (55)

wherek(·, zj)> denotes the linear form mappingk(·, x) to k(zj , x) for x ∈ X.
If we prefer to work with coordinates and the Euclidean dot product, we can use thekernel PCA map

[Scḧolkopf and Smola, 2002]

Φm : X→ Rm, x 7→ K−1/2 (k(x, z1), . . . , k(x, zm))> , (56)

which directly projects into an orthonormal basis of the subspace.7

A number of articles exist discussing how to best choose the expansion pointszi for the purpose of
processing a given dataset, e.g., Smola and Schölkopf [2000], Williams and Seeger [2000].

2.3.3 Regularization Properties

The regularizer‖f‖2H used in Theorem 11, which is what distinguishes SVMs from many other regu-
larized function estimators (e.g., based on coefficient basedL1 regularizers, such as the Lasso [Tibshirani,
1996] or linear programming machines [Schölkopf and Smola, 2002]), stems from the dot product〈f, f〉k
in the RKHSH associated with a positive definite kernel. The nature and implications of this regularizer,
however, are not obvious and we shall now provide an analysis in the Fourier domain. It turns out that
if the kernel is translation invariant, then its Fourier transform allows us to characterize how the different
frequency components off contribute to the value of‖f‖2H. Our exposition will be informal (see also
Poggio and Girosi [1990], Girosi et al. [1993], Smola et al. [1998]), and we will implicitly assume that
all integrals are overRd and exist, and that the operators are well defined.

We will rewrite the RKHS dot product as

〈f, g〉k = 〈Υf,Υg〉 =
〈
Υ2f, g

〉
, (57)

7In caseK does not have full rank, projections onto the span{k(·, z1), . . . , k(·, zm)} are achieved by using the
pseudoinverse ofK instead.
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whereΥ is a positive (and thus symmetric) operator mappingH into a function space endowed with the
usual dot product

〈f, g〉 =
∫
f(x)g(x) dx. (58)

Rather than (57), we consider the equivalent condition (cf. Section 2.2.1)

〈k(x, ·), k(x′, ·)〉k = 〈Υk(x, ·),Υk(x′, ·)〉 =
〈
Υ2k(x, ·), k(x′, ·)

〉
. (59)

If k(x, ·) is aGreen functionof Υ2, we have〈
Υ2k(x, ·), k(x′, ·)

〉
= 〈δx, k(x′, ·)〉 = k(x, x′), (60)

which by the reproducing property (16) amounts to the desired equality (59).8

We now consider the particular case where the kernel can be writtenk(x, x′) = h(x − x′) with a
continuous strictly positive definite functionh ∈ L1(Rd) (cf. Section 2.2.3). A variation of Bochner’s
theorem, stated by Wendland [2005], then tells us that the measure corresponding toh has a nonvanishing
densityυ with respect to the Lebesgue measure, i.e., thatk can be written as

k(x, x′) =
∫
e−i〈x−x

′,ω〉υ(ω)dω =
∫
e−i〈x,ω〉e−i〈x′,ω〉υ(ω)dω. (61)

We would like to rewrite this as〈Υk(x, ·),Υk(x′, ·)〉 for some linear operatorΥ. It turns out that a
multiplication operator in the Fourier domain will do the job. To this end, recall thed-dimensional
Fourier transform, given by

F [f ](ω) := (2π)−
d
2

∫
f(x)e−i〈x,ω〉dx, (62)

with the inverseF−1[f ](x) = (2π)−
d
2

∫
f(ω)ei〈x,ω〉dω. (63)

Next, compute the Fourier transform ofk as

F [k(x, ·)](ω) = (2π)−
d
2

∫ ∫ (
υ(ω′)e−i〈x,ω

′〉
)
ei〈x

′,ω′〉dω′e−i〈x
′,ω〉dx′ (64)

= (2π)
d
2 υ(ω)e−i〈x,ω〉. (65)

Hence we can rewrite (61) as

k(x, x′) = (2π)−d
∫
F [k(x, ·)](ω)F [k(x′, ·)](ω)

υ(ω)
dω. (66)

If our regularization operator maps

Υ: f 7→ (2π)−
d
2 υ−

1
2F [f ], (67)

we thus have

k(x, x′) =
∫

(Υk(x, ·))(ω)(Υk(x′, ·))(ω)dω, (68)

8For conditionally positive definite kernels, a similar correspondence can be established, with a regularization
operator whose null space is spanned by a set of functions which are not regularized (in the case (18), which is
sometimes calledconditionally positive definite of order 1, these are the constants).

17



i.e., our desired identity (59) holds true.
As required in (57), we can thus interpret the dot product〈f, g〉k in the RKHS as a dot product∫

(Υf)(ω)(Υg)(ω)dω. This allows us to understand regularization properties ofk in terms of its (scaled)
Fourier transformυ(ω). Smallvalues ofυ(ω) amplify the corresponding frequencies in (67). Penalizing
〈f, f〉k thus amounts to astrongattenuation of the corresponding frequencies. Hence small values of
υ(ω) for large‖ω‖ are desirable, since high frequency components ofF [f ] correspond to rapid changes
in f . It follows thatυ(ω) describes the filter properties of the corresponding regularization operatorΥ. In
view of our comments following Theorem 8, we can translate this insight into probabilistic terms: if the
probability measureυ(ω)dω∫

υ(ω)dω
describes the desired filter properties, then the natural translation invariant

kernel to use is the characteristic function of the measure.

2.3.4 Remarks and Notes

The notion of kernels as dot products in Hilbert spaces was brought to the field of machine learning by
Aizerman et al. [1964], Boser et al. [1992], Vapnik [1998], Schölkopf et al. [1998]. Aizerman et al. [1964]
used kernels as a tool in a convergence proof, allowing them to apply the Perceptron convergence theorem
to their class of potential function algorithms. To the best of our knowledge, Boser et al. [1992] were the
first to use kernels to construct a nonlinear estimation algorithm, the hard margin predecessor of the
Support Vector Machine, from its linear counterpart, thegeneralized portrait[Vapnik and Lerner, 1963,
Vapnik, 1982]. Whilst all these uses were limited to kernels defined on vectorial data, Schölkopf [1997]
observed that this restriction is unnecessary, and nontrivial kernels on other data types were proposed by
Haussler [1999], Watkins [2000]. Schölkopf et al. [1998] applied the kernel trick to generalize principal
component analysis and pointed out the (in retrospect obvious) fact that any algorithm which only uses
the data via dot products can be generalized using kernels.

In addition to the above uses of positive definite kernels in machine learning, there has been a parallel,
and partly earlier development in the field of statistics, where such kernels have been used for instance for
time series analysis [Parzen, 1970] as well as regression estimation and the solution of inverse problems
[Wahba, 1990].

In probability theory, positive definite kernels have also been studied in depth since they arise as co-
variance kernels of stochastic processes, see e.g. [Loève, 1978]. This connection is heavily being used in
a subset of the machine learning community interested in prediction with Gaussian Processes [Rasmussen
and Williams, 2006].

In functional analysis, the problem of Hilbert space representations of kernels has been studied in great
detail; a good reference is Berg et al. [1984]; indeed, a large part of the material in the present section
is based on that work. Interestingly, it seems that for a fairly long time, there have been two separate
strands of development [Stewart, 1976]. One of them was the study of positive definite functions, which
started later but seems to have been unaware of the fact that it considered a special case of positive
definite kernels. The latter was initiated by Hilbert [1904], Mercer [1909], and pursued for instance by
Schoenberg [1938]. Hilbert calls a kernelk definit if∫ b

a

∫ b

a

k(x, x′)f(x)f(x′)dxdx′ > 0 (69)

for all nonzero continuous functionsf , and shows that all eigenvalues of the corresponding integral
operatorf 7→

∫ b
a
k(x, ·)f(x)dx are then positive. Ifk satisfies the condition (69) subject to the constraint

that
∫ b
a
f(x)g(x)dx = 0, for some fixed functiong, Hilbert calls itrelativ definit. For that case, he shows

thatk has at most one negative eigenvalue. Note that iff is chosen to be constant, then this notion is
closely related to the one of conditionally positive definite kernels, cf. (18). For further historical details
see the review of Stewart [1976] or Berg et al. [1984].
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3 Convex Programming Methods for Estimation

As we saw, kernels can be used both for the purpose of describing nonlinear functions subject to smooth-
ness constraints and for the purpose of computing inner products in some feature space efficiently. In this
section we focus on the latter and how it allows us to design methods of estimation based on the geometry
of the problems at hand.

Unless stated otherwiseE[·] denotes the expectation with respect to all random variables of the ar-
gument. Subscripts, such asEX [·], indicate that the expectation is taken overX. We will omit them
wherever obvious. Finally we will refer toEemp[·] as the empirical average with respect to ann-sample.
Given a sampleS := {(x1, y1), . . . , (xn, yn)} ⊆ X × Y we now aim at finding an affine function
f(x) = 〈w, φ(x)〉 + b or in some cases a functionf(x, y) = 〈φ(x, y), w〉 such that the empirical risk
on S is minimized. In the binary classification case this means that we want to maximize the agreement
betweensgn f(x) andy.

• Minimization of the empirical risk with respect to(w, b) is NP-hard [Minsky and Papert, 1969]. In
fact, Ben-David et al. [2003] show that even approximately minimizing the empirical risk is NP-
hard, not only for linear function classes but also for spheres and other simple geometrical objects.
This means that even if the statistical challenges could be solved, we still would be confronted with
a formidable algorithmic problem.
• The indicator function{yf(x) < 0} is discontinuous and even small changes inf may lead to large

changes in both empirical and expected risk. Properties of such functions can be captured by the VC-
dimension [Vapnik and Chervonenkis, 1971], that is, the maximum number of observations which
can be labeled in an arbitrary fashion by functions of the class. Necessary and sufficient conditions
for estimation can be stated in these terms [Vapnik and Chervonenkis, 1991]. However, much tighter
bounds can be obtained by also using the scale of the class [Alon et al., 1993, Bartlett et al., 1996,
Williamson et al., 2001]. In fact, there exist function classes parameterized by a single scalar which
have infinite VC-dimension [Vapnik, 1995].

Given the difficulty arising from minimizing the empirical risk we now discuss algorithms which mini-
mize an upper bound on the empirical risk, while providing good computational properties and consis-
tency of the estimators. The statistical analysis is relegated to Section 4.

3.1 Support Vector Classification

Assume thatS is linearly separable, i.e. there exists a linear functionf(x) such thatsgn yf(x) = 1 on
S. In this case, the task of finding a large margin separating hyperplane can be viewed as one of solving
[Vapnik and Lerner, 1963]

minimize
w,b

1
2
‖w‖2 s.t. yi (〈w, x〉+ b) ≥ 1. (70)

Note that‖w‖−1
f(xi) is the distance of the pointxi to the hyperplaneH(w, b) := {x| 〈w, x〉+ b = 0}.

The conditionyif(xi) ≥ 1 implies that the margin of separation is at least2 ‖w‖−1. The bound becomes
exact if equality is attained for someyi = 1 andyj = −1. Consequently minimizing‖w‖ subject to
the constraints maximizes the margin of separation. Eq. (70) is a quadratic program which can be solved
efficiently [Luenberger, 1984, Fletcher, 1989, Boyd and Vandenberghe, 2004].

Mangasarian [1965] devised a similar optimization scheme using‖w‖1 instead of‖w‖2 in the objective
function of (70). The result is alinear program. In general, one can show [Smola et al., 2000] that
minimizing the`p norm ofw leads to the maximizing of the margin of separation in the`q norm where
1
p + 1

q = 1. The`1 norm leads to sparse approximation schemes (see also Chen et al. [1999]), whereas
the`2 norm can be extended to Hilbert spaces and kernels.
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To deal with nonseparable problems, i.e. cases when (70) is infeasible, we need to relax the constraints
of the optimization problem. Bennett and Mangasarian [1992] and Cortes and Vapnik [1995] impose a
linear penalty on the violation of the large-margin constraints to obtain:

minimize
w,b,ξ

1
2
‖w‖2 + C

n∑
i=1

ξi s.t. yi (〈w, xi〉+ b) ≥ 1− ξi andξi ≥ 0, ∀i ∈ [n] . (71)

Eq. (71) is a quadratic program which is always feasible (e.g.w, b = 0 andξi = 1 satisfy the constraints).
C > 0 is a regularization constant trading off the violation of the constraints vs. maximizing the overall
margin.

Whenever the dimensionality ofX exceedsn, direct optimization of (71) is computationally inefficient.
This is particularly true if we map fromX into an RKHS. To address these problems one may solve the
problem in dual space as follows. The Lagrange function of (71) is given by

L(w, b, ξ, α, η) =
1
2
‖w‖2 + C

n∑
i=1

ξi +
n∑
i=1

αi (1− ξi − yi (〈w, xi〉+ b))−
n∑
i=1

ηiξi (72)

whereαi, ηi ≥ 0 for all i ∈ [n]. To compute the dual ofL we need to identify the first order conditions
in w, b. They are given by

∂wL = w −
n∑
i=1

αiyixi = 0 and∂bL = −
n∑
i=1

αiyi = 0 and∂ξi
L = C − αi + ηi = 0 . (73)

This translates intow =
∑n
i=1 αiyixi, the linear constraint

∑n
i=1 αiyi = 0, and the box-constraint

αi ∈ [0, C] arising fromηi ≥ 0. Substituting (73) intoL yields the Wolfe [1961] dual

minimize
α

1
2
α>Qα− α>1 s.t. α>y = 0 andαi ∈ [0, C]. ∀i ∈ [n] . (74)

Q ∈ Rn×n is the matrix of inner productsQij := yiyj 〈xi, xj〉. Clearly this can be extended to feature
maps and kernels easily viaKij := yiyj 〈Φ(xi),Φ(xj)〉 = yiyjk(xi, xj). Note thatw lies in the span
of thexi. This is an instance of the Representer Theorem (Theorem 11). The KKT conditions [Karush,
1939, Kuhn and Tucker, 1951, Boser et al., 1992, Cortes and Vapnik, 1995] require that at optimality
αi(yif(xi)−1) = 0. This means that only thosexi may appear in the expansion (73) for whichyif(xi) ≤
1, as otherwiseαi = 0. Thexi with αi > 0 are commonly referred to as support vectors.

Note that
∑n
i=1 ξi is an upper bound on the empirical risk, asyif(xi) ≤ 0 implies ξi ≥ 1 (see also

Lemma 12). The number of misclassified pointsxi itself depends on the configuration of the data and the
value ofC. The result of Ben-David et al. [2003] suggests that finding even an approximate minimum
classification error solution is difficult. That said, it is possible to modify (71) such that a desired target
number of observations violatesyif(xi) ≥ ρ for someρ ∈ R by making the threshold itself a variable
of the optimization problem [Schölkopf et al., 2000]. This leads to the following optimization problem
(ν-SV classification):

minimize
w,b,ξ

1
2
‖w‖2 +

n∑
i=1

ξi − nνρ subject toyi (〈w, xi〉+ b) ≥ ρ− ξi andξi ≥ 0. (75)

The dual of (75) is essentially identical to (74) with the exception of an additional constraint:

minimize
α

1
2
α>Qα subject toα>y = 0 andα>1 = nν andαi ∈ [0, 1]. (76)

One can show that for everyC there exists aν such that the solution of (76) is a multiple of the solution
of (74). Scḧolkopf et al. [2000] prove that solving (76) for whichρ > 0 satisfies:
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1. ν is an upper bound on the fraction of margin errors.
2. ν is a lower bound on the fraction of SVs.

Moreover under mild conditions, with probability1, asymptotically,ν equals both the fraction of SVs
and the fraction of errors.

This statement implies that whenever the data are sufficiently well separable (that isρ > 0), ν-SV
Classification finds a solution with a fraction of at mostν margin errors. Also note that forν = 1, all
αi = 1, that is,f becomes an affine copy of the Parzen windows classifier (5).

3.2 Estimating the Support of a Density

We now extend the notion of linear separation to that of estimating the support of a density [Schölkopf
et al., 2001, Tax and Duin, 1999]. Denote byX = {x1, . . . , xn} ⊆ X the sample drawn fromP(x). Let
C be a class of measurable subsets ofX and letλ be a real-valued function defined onC. Thequantile
function[Einmal and Mason, 1992] with respect to(P, λ,C) is defined as

U(µ) = inf {λ(C)|P(C) ≥ µ,C ∈ C} whereµ ∈ (0, 1]. (77)

We denote byCλ(µ) andCmλ (µ) the (not necessarily unique)C ∈ C that attain the infimum (when it
is achievable) onP(x) and on the empirical measure given byX respectively. A common choice ofλ
is Lebesgue measure, in which caseCλ(µ) is the minimum volume setC ∈ C that contains at least a
fractionµ of the probability mass.

Support estimation requires us to find someCmλ (µ) such that|P (Cmλ (µ))− µ| is small. This is where
the complexity trade-off enters: On the one hand, we want to use a rich classC to capture all possible dis-
tributions, on the other hand large classes lead to large deviations betweenµ andP (Cmλ (µ)). Therefore,
we have to consider classes of sets which are suitably restricted. This can be achieved using an SVM
regularizer.

In the case whereµ < 1, it seems the first work was reported in Sager [1979] and Hartigan [1987],
in which X = R2, with C being the class of closed convex sets inX. Nolan [1991] considered higher
dimensions, withC being the class of ellipsoids. Tsybakov [1997] studied an estimator based on piece-
wise polynomial approximation ofCλ(µ) and showed it attains the asymptotically minimax rate for
certain classes of densities. Polonik [1997] studied the estimation ofCλ(µ) by Cmλ (µ). He derived
asymptotic rates of convergence in terms of various measures of richness ofC. More information on
minimum volume estimators can be found in that work, and in Schölkopf et al. [2001].

SV support estimation works by using SV support estimation relates to previous work as follows: set
λ(Cw) = ‖w‖2, whereCw = {x|fw(x) ≥ ρ}, fw(x) = 〈w, x〉, and(w, ρ) are respectively a weight
vector and an offset. Stated as a convex optimization problem we want to separate the data from the origin
with maximum margin via:

minimize
w,ξ,ρ

1
2
‖w‖2 +

n∑
i=1

ξi − nνρ subject to〈w, xi〉 ≥ ρ− ξi andξi ≥ 0. (78)

Here,ν ∈ (0, 1] plays the same role as in (75), controlling the number of observationsxi for which
f(xi) ≤ ρ. Since nonzero slack variablesξi are penalized in the objective function, ifw andρ solve this
problem, then the decision functionf(x) will attain or exceedρ for at least a fraction1 − ν of thexi
contained inX while the regularization term‖w‖ will still be small. The dual of (78) yields:

minimize
α

1
2
α>Kα subject toα>1 = νn andαi ∈ [0, 1] (79)

To compare (79) to a Parzen windows estimator assume thatk is such that it can be normalized as a
density in input space, such as a Gaussian. Usingν = 1 in (79) the constraints automatically imply
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αi = 1. Thusf reduces to a Parzen windows estimate of the underlying density. Forν < 1, the equality
constraint (79) still ensures thatf is a thresholded density, now depending only on asubsetofX — those
which are important for deciding whetherf(x) ≤ ρ.

3.3 Regression Estimation

SV regression was first proposed in Vapnik [1995], Vapnik et al. [1997], and Drucker et al. [1997] using
the so-calledε-insensitive loss function. It is a direct extension of the soft-margin idea to regression:
instead of requiring thatyf(x) exceeds some margin value, we now require that the valuesy − f(x) are
bounded by a margin on both sides. That is, we impose the soft constraints

yi − f(xi) ≤ εi − ξi andf(xi)− yi ≤ εi − ξ∗i . (80)

whereξi, ξ∗i ≥ 0. If |yi − f(xi)| ≤ ε no penalty occurs. The objective function is given by the sum
of the slack variablesξi, ξ∗i penalized by someC > 0 and a measure for the slope of the function
f(x) = 〈w, x〉+ b, that is1

2 ‖w‖
2.

Before computing the dual of this problem let us consider a somewhat more general situation where
we use a range of different convex penalties for the deviation betweenyi andf(xi). One may check that
minimizing 1

2 ‖w‖
2 + C

∑m
i=1 ξi + ξ∗i subject to (80) is equivalent to solving

minimize
w,b,ξ

1
2
‖w‖2 +

n∑
i=1

ψ(yi − f(xi)) whereψ(ξ) = max (0, |ξ| − ε) . (81)

Choosing different loss functionsψ leads to a rather rich class of estimators:

• ψ(ξ) = 1
2ξ

2 yields penalized least squares (LS) regression [Hoerl and Kennard, 1970, Tikhonov,
1963, Morozov, 1984, Wahba, 1990]. The corresponding optimization problem can be minimized
by solving a linear system.
• Forψ(ξ) = |ξ| we obtain the penalized least absolute deviations (LAD) estimator [Bloomfield and

Steiger, 1983]. That is, we obtain a quadratic program to estimate the conditional median.
• A combination of LS and LAD loss yields a penalized version of Huber’s robust regression [Huber,

1981, Smola and Schölkopf, 1998]. In this case we haveψ(ξ) = 1
2σ ξ

2 for |ξ| ≤ σ andψ(ξ) = |ξ|−σ
2

for |ξ| ≥ σ.
• Note that also quantile regression [Koenker, 2005] can be modified to work with kernels [Schölkopf

et al., 2000, Takeuchi et al., 2006] by using as loss function the “pinball” loss, that isψ(ξ) = (1−τ)ψ
if ψ < 0 andψ(ξ) = τψ if ψ > 0.

All the optimization problems arising from the above five cases are convex quadratic programs. Their
dual resembles that of (80), namely

minimize
α,α∗

1
2
(α− α∗)>K(α− α∗) + ε>(α+ α∗)− y>(α− α∗) (82a)

subject to(α− α∗)>1 = 0 andαi, α
∗
i ∈ [0, C]. (82b)

HereKij = 〈xi, xj〉 for linear models andKij = k(xi, xj) if we mapx → Φ(x). The ν-trick, as
described in (75) [Scḧolkopf et al., 2000], can be extended to regression, allowing one to choose the
margin of approximation automatically. In this case (82a) drops the terms inε. In its place, we add a
linear constraint(α − α∗)>1 = νn. Likewise, LAD is obtained from (82) by dropping the terms inε
without additional constraints. Robust regression leaves (82) unchanged, however, in the definition ofK
we have an additional term ofσ−1 on the main diagonal. Further details can be found in Schölkopf and
Smola [2002]. For Quantile Regression we dropε and we obtain different constantsC(1 − τ) andCτ
for the constraints onα∗ andα. We will discuss uniform convergence properties of the empirical risk
estimates with respect to variousψ(ξ) in Section 4.
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3.4 Multicategory Classification, Ranking and Ordinal Regression

Many estimation problems cannot be described by assuming thatY = {±1}. In this case it is advan-
tageous to go beyond simple functionsf(x) depending onx only. Instead, we can encode a larger
degree of information by estimating a functionf(x, y) and subsequently obtaining a prediction via
ŷ(x) := argmaxy∈Y f(x, y). In other words, we study problems wherey is obtained as the solution
of an optimization problem overf(x, y) and we wish to findf such thaty matchesyi as well as possible
for relevant inputsx.

Note that the loss may be more than just a simple0 − 1 loss. In the following we denote by∆(y, y′)
the loss incurred by estimatingy′ instead ofy. Without loss of generality we require that∆(y, y) = 0
and that∆(y, y′) ≥ 0 for all y, y′ ∈ Y. Key in our reasoning is the following:

Lemma 12 Let f : X × Y → R and assume that∆(y, y′) ≥ 0 with ∆(y, y) = 0. Moreover letξ ≥ 0
such thatf(x, y)− f(x, y′) ≥ ∆(y, y′)− ξ for all y′ ∈ Y. In this caseξ ≥ ∆(y, argmaxy′∈Y f(x, y′)).

Proof Denote byy∗ := argmaxy∈Y f(x, y). By assumption we haveξ ≥ ∆(y, y∗)+f(x, y∗)−f(x, y).
Sincef(x, y∗) ≥ f(x, y′) for all y′ ∈ Y the inequality holds.

The construction of the estimator was suggested in Taskar et al. [2003] and Tsochantaridis et al. [2005],
and a special instance of the above lemma is given by Joachims [2005]. While the bound appears quite
innocuous, it allows us to describe a much richer class of estimation problems as a convex program.

To deal with the added complexity we assume thatf is given byf(x, y) = 〈Φ(x, y), w〉. Given the
possibly nontrivial connection betweenx andy the use ofΦ(x, y) cannot be avoided. Corresponding
kernel functions are given byk(x, y, x′, y′) = 〈Φ(x, y),Φ(x′, y′)〉. We have the following optimization
problem [Tsochantaridis et al., 2005]:

minimize
w,ξ

1
2
‖w‖2 + C

n∑
i=1

ξi s.t. 〈w,Φ(xi, yi)− Φ(xi, y)〉 ≥ ∆(yi, y)− ξi, ∀i ∈ [n], y ∈ Y . (83)

This is a convex optimization problem which can be solved efficiently if the constraints can be evalu-
ated without high computational cost. One typically employs column-generation methods [Hettich and
Kortanek, 1993, R̈atsch, 2001, Bennett et al., 2000, Tsochantaridis et al., 2005, Fletcher, 1989] which
identify one violated constraint at a time to find an approximate minimum of the optimization problem.

To describe the flexibility of the framework set out by (83) we give several examples below:

• Binary classification can be recovered by settingΦ(x, y) = yΦ(x), in which case the constraint of
(83) reduces to2yi 〈Φ(xi), w〉 ≥ 1 − ξi. Ignoring constant offsets and a scaling factor of2, this is
exactly the standard SVM optimization problem.
• Multicategory classification problems [Crammer and Singer, 2001, Collins, 2000, Allwein et al.,

2000, R̈atsch et al., 2003] can be encoded viaY = [N ], whereN is the number of classes and
∆(y, y′) = 1 − δy,y′ . In other words, the loss is1 whenever we predict the wrong class and0 for
correct classification. Corresponding kernels are typically chosen to beδy,y′k(x, x′).
• We can deal with joint labeling problems by settingY = {±1}n. In other words, the error measure

does not depend on a single observation but on an entire set of labels. Joachims [2005] shows that
the so-calledF1 score [van Rijsbergen, 1979] used in document retrieval and the area under the ROC
curve [Bamber, 1975, Gribskov and Robinson, 1996] fall into this category of problems. Moreover,
Joachims [2005] derives anO(n2) method for evaluating the inequality constraint overY.

• Multilabel estimation problems deal with the situation where we want to find the best subset of
labelsY ⊆ 2[N ] which correspond to some observationx. The problem is described in Elisseeff and
Weston [2001], where the authors devise a ranking scheme such thatf(x, i) > f(x, j) if label i ∈ y
andj 6∈ y. It is a special case of a general ranking approach described next.

23



Note that (83) is invariant under translationsΦ(x, y) ← Φ(x, y) + Φ0 where Φ0 is constant, as
Φ(xi, yi) − Φ(xi, y) remains unchanged. In practice this means that transformationsk(x, y, x′, y′) ←
k(x, y, x′, y′) + 〈Φ0,Φ(x, y)〉 + 〈Φ0,Φ(x′, y′)〉 + ‖Φ0‖2 do not affect the outcome of the estimation
process. SinceΦ0 was arbitrary, we have the following lemma:

Lemma 13 Let H be an RKHS onX × Y with kernelk. Moreover letg ∈ H. Then the function
k(x, y, x′, y′) + f(x, y) + f(x′, y′) + ‖g‖2H is a kernel and it yields the same estimates ask.

We need a slight extension to deal with general ranking problems. Denote byY = Graph[N ] the set
of all directed graphs onN vertices which do not contain loops of less than three nodes. Here an edge
(i, j) ∈ y indicates thati is preferred toj with respect to the observationx. It is the goal to find some
functionf : X × [N ] → R which imposes a total order on[N ] (for a givenx) by virtue of the function
valuesf(x, i) such that the total order andy are in good agreement.

More specifically, Dekel et al. [2003] and Crammer and Singer [2005] propose a decomposition algo-
rithm A for the graphsy such that the estimation error is given by the number of subgraphs ofy which
are in disagreement with the total order imposed byf . As an example, multiclass classification can be
viewed as a graphy where the correct labeli is at the root of a directed graph and all incorrect labels
are its children. Multilabel classification is then a bipartite graph where the correct labels only contain
outgoing arcs and the incorrect labels only incoming ones.

This setting leads to a form similar to (83) except for the fact that we now have constraints over each
subgraphG ∈ A(y). We solve

minimize
w,ξ

1
2
‖w‖2 + C

n∑
i=1

|A(yi)|−1
∑

G∈A(yi)

ξiG (84)

subject to〈w,Φ(xi, u)− Φ(xi, v)〉 ≥ 1− ξiG andξiG ≥ 0 for all (u, v) ∈ G ∈ A(yi).

That is, we test for all(u, v) ∈ G whether the ranking imposed byG ∈ yi is satisfied.
Finally, ordinal regression problems which perform ranking not over labelsy but rather over observa-

tionsxwere studied by Herbrich et al. [2000] and Chapelle and Harchaoui [2005] in the context of ordinal
regression and conjoint analysis respectively. In ordinal regressionx is preferred tox′ if f(x) > f(x′) and
hence one minimizes an optimization problem akin to (83), with constraint〈w,Φ(xi)− Φ(xj)〉 ≥ 1−ξij .
In conjoint analysis the same operation is carried out forΦ(x, u), whereu is the user under consideration.
Similar models were also studied by Basilico and Hofmann [2004]. Further models will be discussed in
Section 5, in particular situations whereY is of exponential size. These models allow one to deal with
sequences and more sophisticated structures.

3.5 Applications of SVM Algorithms

When SVMs were first presented, they initially met with scepticism in the statistical community. Part of
the reason was that as described, SVMs construct their decision rules in potentially very high-dimensional
feature spaces associated with kernels. Although there was a fair amount of theoretical work addressing
this issue (see Section 4 below), it was probably to a larger extent the empirical success of SVMs that
paved its way to become a standard method of the statistical toolbox. The first successes of SVMs on prac-
tical problem were in handwritten digit recognition, which was the main benchmark task considered in
the Adaptive Systems Department at AT&T Bell Labs where SVMs were developed (see e.g. LeCun et al.
[1998]). Using methods to incorporate transformation invariances, SVMs were shown to beat the world
record on the MNIST benchmark set, at the time the gold standard in the field [DeCoste and Schölkopf,
2002]. There has been a significant number of further computer vision applications of SVMs since then,
including tasks such as object recognition [Blanz et al., 1996, Chapelle et al., 1999, Holub et al., 2005,
Everingham et al., 2005] and detection [Romdhani et al., 2004]. Nevertheless, it is probably fair to say
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that two other fields have been more influential in spreading the use of SVMs: bioinformatics and natural
language processing. Both of them have generated a spectrum of challenging high-dimensional problems
on which SVMs excel, such as microarray processing tasks [Brown et al., 2000] and text categorization
[Dumais, 1998]. For further references, see Schölkopf et al. [2004] and Joachims [2002].

Many successful applications have been implemented using SV classifiers; however, also the other
variants of SVMs have led to very good results, including SV regression [Müller et al., 1997], SV novelty
detection [Hayton et al., 2001], SVMs for ranking [Herbrich et al., 2000] and more recently, problems
with interdependent labels [Tsochantaridis et al., 2005, McCallum et al., 2005].

At present there exists a large number of readily available software packages for SVM optimization.
For instance, SVMStruct, based on [Tsochantaridis et al., 2005] solves structured estimation problems.
LibSVM is an open source solver which excels on binary problems. The Torch package contains a
number of estimation methods, including SVM solvers. Several SVM implementations are also available
via statistical packages, such as R.

4 Margins and Uniform Convergence Bounds

So far we motivated the algorithms by means of their practicality and the fact that0 − 1 loss functions
yield hard-to-control estimators. We now follow up on the analysis by providing uniform convergence
bounds for large margin classifiers. We focus on the case of scalar valued functions applied to classifi-
cation for two reasons: The derivation is well established and it can be presented in a concise fashion.
Secondly, the derivation of corresponding bounds for the vectorial case is by and large still an open prob-
lem. Preliminary results exist, such as the bounds by Collins [2000] for the case of perceptrons, Taskar
et al. [2003] who derive capacity bounds in terms of covering numbers by an explicit covering construc-
tion, and Bartlett and Mendelson [2002], who give Gaussian average bounds for vectorial functions. We
believe that the scaling behavior of these bounds in the number of classes|Y| is currently not optimal,
when applied to the problems of type (83).

Our analysis is based on the following ideas: firstly the0− 1 loss is upper bounded by some function
ψ(yf(x)) which can be efficiently minimized, such as the soft margin functionmax(0, 1− yf(x)) of the
previous section. Secondly we prove that the empirical average of theψ-loss is concentrated close to its
expectation. This will be achieved by means of Rademacher averages. Thirdly we show that under rather
general conditions the minimization of theψ-loss is consistent with the minimization of the expected risk.
Finally, we combine these bounds to obtain rates of convergence which only depend on the Rademacher
average and the approximation properties of the function class under consideration.

4.1 Margins and Empirical Risk

While the sign ofyf(x) can be used to assess the accuracy of a binary classifier we saw that for al-
gorithmic reasons one rather optimizes (a smooth function of)yf(x) directly. In the following we
assume that the binary lossχ(ξ) = 1

2 (1 − sgn ξ) is majorized by some functionψ(ξ) ≥ χ(ξ),
e.g. via the construction of Lemma 12. ConsequentlyE [χ(yf(x))] ≤ E [ψ(yf(x))] and likewise
Eemp [χ(yf(x))] ≤ Eemp [ψ(yf(x))]. The hope is (as will be shown in Section 4.3) that minimizing
the upper bound leads to consistent estimators.

There is a long-standing tradition of minimizingyf(x) rather than the number of misclassifications.
yf(x) is known as “margin” (based on the geometrical reasoning) in the context of SVMs [Vapnik and
Lerner, 1963, Mangasarian, 1965], as “stability” in the context of Neural Networks [Krauth and Mézard,
1987, Ruj́an, 1993], and as the “edge” in the context of arcing [Breiman, 1999]. One may show [Makovoz,
1996, Barron, 1993, Herbrich and Williamson, 2002] that functionsf in an RKHS achieving a large
margin can be approximated by another functionf ′ achieving almost the same empirical error using a
much smaller number of kernel functions.

Note that by default, uniform convergence bounds are expressed in terms of minimization of the em-
pirical risk average with respect to afixedfunction classF, e.g. Vapnik and Chervonenkis [1971]. This is
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very much unlike what is done in practice: in SVM (83) the sum of empirical risk and a regularizer is min-
imized. However, one may check that minimizingEemp [ψ(yf(x))] subject to‖w‖2 ≤ W is equivalent
to minimizingEemp [ψ(yf(x))] + λ ‖w‖2 for suitably chosen values ofλ. The equivalence is immediate
by using Lagrange multipliers. For numerical reasons, however, the second formulation is much more
convenient [Tikhonov, 1963, Morozov, 1984], as it acts as a regularizer. Finally, for the design of adap-
tive estimators, so-called luckiness results exist, which provide risk bounds in a data-dependent fashion
[Shawe-Taylor et al., 1998, Herbrich and Williamson, 2002].

4.2 Uniform Convergence and Rademacher Averages

The next step is to bound the deviationEemp[ψ(yf(x))] − E[ψ(yf(x))] by means of Rademacher
averages. For details see Bousquet et al. [2005], Mendelson [2003], Bartlett et al. [2002], and
Koltchinskii [2001]. Denote byg : Xn → R a function ofn variables and letc > 0 such that
|g(x1, . . . , xn) − g(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)| ≤ c for all x1, . . . , xn, x

′
i ∈ X and for alli ∈ [n],

then [McDiarmid, 1989]

P {E [g(x1, . . . , xn)]− g(x1, . . . , xn) > ε} ≤ exp
(
−2ε2/nc2

)
. (85)

Assume thatf(x) ∈ [0, B] for all f ∈ F and letg(x1, . . . , xn) := supf∈F |Eemp [f(x)] − E [f(x)] |.
Then it follows thatc ≤ B

n . Solving (85) forg we obtain that with probability at least1− δ

sup
f∈F

E [f(x)]−Eemp [f(x)] ≤ E

[
sup
f∈F

E [f(x)]−Eemp [f(x)]

]
+B

√
− log δ

2n
. (86)

This means that with high probability the largest deviation between the sample average and its expectation
is concentrated around its mean and within anO(n−

1
2 ) term. The expectation can be bounded by a

classical symmetrization argument [Vapnik and Chervonenkis, 1971] as follows:

EX

[
sup
f∈F

E[f(x′)]−Eemp[f(x)]

]
≤ EX,X′

[
sup
f∈F

Eemp[f(x′)]−Eemp[f(x)]

]

=EX,X′,σ

[
sup
f∈F

Eemp[σf(x′)]−Eemp[σf(x)]

]
≤ 2EX,σ

[
sup
f∈F

Eemp[σf(x)]

]
=: 2Rn [F] .

The first inequality follows from the convexity of the argument of the expectation, the second equality
follows from the fact thatxi andx′i are drawn i.i.d. from the same distribution, hence we may swap
terms. Hereσi are independent±1-valued zero-mean Rademacher random variables.Rn [F] is referred
as the Rademacher average [Mendelson, 2001, Bartlett and Mendelson, 2002, Koltchinskii, 2001] ofF

wrt. sample sizen.
For linear function classesRn [F] takes on a particularly nice form. We begin withF :=

{f |f(x) = 〈x,w〉 and ‖w‖ ≤ 1}. It follows thatsup‖w‖≤1

∑n
i=1 σi 〈w, xi〉 = ‖

∑n
i=1 σixi‖. Hence

nRn [F] = EX,σ
∥∥ n∑
i=1

σixi
∥∥ ≤ EX

Eσ

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2
 1

2

= EX

[
n∑
i=1

‖xi‖2
] 1

2

≤
√
nE

[
‖x‖2

]
.

(87)

Here the first inequality is a consequence of Jensen’s inequality, the second equality follows from the fact
thatσi are i.i.d. zero-mean random variables, and the last step again is a result of Jensen’s inequality.
Corresponding tight lower bounds by a factor of1/

√
2 exist and they are a result of the Khintchine-

Kahane inequality [Kahane, 1968].
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Note that (87) allows us to boundRn [F] ≤ n−
1
2 r wherer is the average norm of vectors in the

sample. An extension to kernel functions is straightforward: by design of the inner product we have
r =

√
Ex [k(x, x)]. Note that this bound isindependentof the dimensionality of the data but rather only

depends on the expected norm of the input vectors. Moreoverr can also be interpreted as the trace of the
integral operator with kernelk(x, x′) and probability measure onX.

Since we are computingEemp [ψ(yf(x))] we are interested in the Rademacher complexity ofψ ◦ F.
Bartlett and Mendelson [2002] show thatRn [ψ ◦ F] ≤ LRn [F] for any Lipschitz continuous functionψ
with Lipschitz constantL and withψ(0) = 0. Secondly, for{yb where|b| ≤ B} the Rademacher average
can be bounded byB

√
2 log 2/n, as follows from [Bousquet et al., 2005, eq. (4)]. This takes care of the

offset b. For sums of function classesF andG we haveRn [F + G] ≤ Rn [F] + Rn [G]. This means
that for linear functions with‖w‖ ≤ W , |b| ≤ B, andψ Lipschitz continuous with constantL we have
Rn ≤ L√

n
(Wr +B

√
2 log 2).

4.3 Upper Bounds and Convex Functions

We briefly discuss consistency of minimization of the surrogate loss functionψ : R→ [0,∞), which we
assume to be convex andχ-majorizing, i.e.ψ ≥ χ [Jordan et al., 2003, Zhang, 2004]. Examples of such
functions are the soft-margin lossmax(0, 1 − γξ), which we discussed in Section 3, the Boosting Loss
e−ξ, which is commonly used in AdaBoost [Schapire et al., 1998, Rätsch et al., 2001], and the logistic
lossln

(
1 + e−ξ

)
(see Section 5).

Denote byf∗χ the minimizer of the expected risk and letf∗ψ be the minimizer ofE [ψ(yf(x)] with
respect tof . Then under rather general conditions onψ [Zhang, 2004] for allf the following inequality
holds:

E [χ(yf(x))]−E
[
χ(yf∗χ(x))

]
≤ c

(
E [ψ(yf(x))]−E

[
ψ(yf∗ψ(x))

])s
. (88)

In particular we havec = 4 ands = 1 for soft margin loss, whereas for Boosting and logistic regres-
sion c =

√
8 and s = 1

2 . Note that (88) implies that the minimizer of theψ loss is consistent, i.e.
E [χ(yfψ(x))] = E [χ(yfχ(x))].

4.4 Rates of Convergence

We now have all tools at our disposition to obtain rates of convergence to the minimizer of the expected
risk which depend only on the complexity of the function class and its approximation properties in terms
of theψ-loss. Denote byf∗ψ,F the minimizer ofE [ψ(yf(x))] restricted toF, let fnψ,F be the minimizer

of the empiricalψ-risk, and letδ(F, ψ) := E
[
yf∗ψ,F(x)

]
− E

[
yf∗ψ(x)

]
be the approximation error due

to the restriction off to F. Then a simple telescope sum yields

E
[
χ(yfnψ,F)

]
≤E

[
χ(yf∗χ)

]
+ 4

[
E

[
ψ(yfnψ,F)

]
−Eemp

[
ψ(yfnψ,F)

]]
+ 4

[
Eemp

[
ψ(yf∗ψ,F)

]
−E

[
ψ(yf∗ψ,F)

]]
+ δ(F, ψ)

≤E
[
χ(yf∗χ)

]
+ δ(F, ψ) + 4

RWγ√
n

[√
−2 log δ + r/R+

√
8 log 2

]
. (89)

Hereγ is the effective margin of the soft-margin lossmax(0, 1− γyf(x)),W is an upper bound on‖w‖,
R ≥ ‖x‖, r is the average radius, as defined in the previous section, and we assumed thatb is bounded
by the largest value of〈w, x〉. A similar reasoning for logistic and exponential loss is given in Bousquet
et al. [2005].

Note that we get anO(1/
√
n) rate of convergence regardless of the dimensionality ofx. Moreover

note that the rate is dominated byRWγ, that is, the classical radius-margin bound [Vapnik, 1995]. Here
R is the radius of an enclosing sphere for the data and1/(Wγ) is an upper bound on the radius of the
data — the soft-margin loss becomes active only foryf(x) ≤ γ.
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4.5 Localization and Noise Conditions

In many cases it is possible to obtain better rates of convergence thanO(1/
√
n) by exploiting information

about the magnitude of the error of misclassification and about the variance off on X. Such bounds
use Bernstein-type inequalities and they lead to localized Rademacher averages [Bartlett et al., 2002,
Mendelson, 2003, Bousquet et al., 2005].

Basically the slowO(1/
√
n) rates arise whenever the region around the Bayes optimal decision bound-

ary is large. In this case, determining this region produces the slow rate, whereas the well-determined
region could be estimated at anO(1/n) rate.

Tsybakov’s noise condition [Tsybakov, 2003] requires that there existβ, γ ≥ 0 such that

P
{∣∣∣∣P {y = 1|x} − 1

2

∣∣∣∣ ≤ t} ≤ βtγ for all t ≥ 0. (90)

Note that forγ =∞ the condition implies that there exists somes such that
∣∣P {y = 1|x} − 1

2

∣∣ ≥ s > 0
almost surely. This is also known as Massart’s noise condition.

The key benefit of (90) is that it implies a relationship between variance and expected value of classi-
fication loss. More specifically forα = γ

1+γ andg : X→ Y we have

E
[
[{g(x) 6= y} − {g∗(x) 6= y}]2

]
≤ c [E [{g(x) 6= y} − {g∗(x) 6= y}]]α . (91)

Hereg∗(x) := argmaxy P(y|x) denotes the Bayes optimal classifier. This is sufficient to obtain faster
rates for finite sets of classifiers. For more complex function classes localization is used. See, e.g.
Bousquet et al. [2005] and Bartlett et al. [2002] for more details.

5 Statistical Models and RKHS

As we have argued so far, the Reproducing Kernel Hilbert Space approach offers many advantages in
machine learning: (i) powerful and flexible models can be defined, (ii) many results and algorithms for
linear models in Euclidean spaces can be generalized to RKHS, (iii) learning theory assures that effective
learning in RKHS is possible, for instance, by means of regularization.

In this chapter, we will show how kernel methods can be utilized in the context ofstatistical models.
There are several reasons to pursue such an avenue. First of all, in conditional modeling, it is often
insufficent to compute a prediction without assessing confidence and reliability. Second, when dealing
with multiple or structured responses, it is important to modeldependencies between responsesin addition
to the dependence on a set of covariates. Third, incomplete data, be it due to missing variables, incomplete
training targets, or a model structure involving latent variables, needs to be dealt with in a principled
manner. All of these issues can be addressed by using the RKHS approach to define statistical models and
by combining kernels with statistical approaches such as exponential models, generalized linear models,
and Markov networks.

5.1 Exponential RKHS Models

5.1.1 Exponential Models

Exponential models orexponential familiesare among the most important class of parametric models
studied in statistics. Given a canonical vector of statisticsΦ and aσ-finite measureν over the sample
spaceX, an exponential model can be defined via its probability density with respect toν (cf. Barndorff-
Nielsen [1978]),

p(x; θ) = exp [〈θ,Φ(x)〉 − g(θ)] , where g(θ) := ln
∫

X

e〈θ,Φ(x)〉dν(x) . (92)
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Them-dimensional vectorθ ∈ Θ with Θ :={θ ∈ Rm : g(θ) <∞} is also called thecanonical parameter
vector. In general, there are multiple exponential representations of the same model via canonical param-
eters that are affinely related to one another (Murray and Rice [1993]). A representation with minimalm
is called a minimal representation, in which casem is theorderof the exponential model. One of the most
important properties of exponential families is that they have sufficient statistics of fixed dimensionality,
i.e. the joint density for i.i.d. random variablesX1, X2, . . . , Xn is also exponential, the corresponding
canonical statistics simply being

∑n
i=1 Φ(Xi). It is well-known that much of the structure of exponential

models can be derived from the log partition functiong(θ), in particular (cf. Lauritzen [1996])

∇θg(θ) = µ(θ) :=Eθ [Φ(X)] , ∂2
θg(θ) = Vθ [Φ(X)] , (93)

whereµ is known as the mean-value map. Being a covariance matrix, the Hessian ofg is positive semi-
definite and consequentlyg is convex.

Maximum likelihood estimation (MLE) in exponential families leads to a particularly elegant form for
the MLE equations: the expected and the observed canonical statistics agree at the MLEθ̂. This means,
given an i.i.d. sampleS = (xi)i∈[n],

Eθ̂ [Φ(X)] = µ(θ̂) =
1
n

n∑
i=1

Φ(xi)=:ES [Φ(X)] . (94)

5.1.2 Exponential RKHS Models
One can extend the parameteric exponential model in (92) by defining a statistical model via an RKHS

H with generating kernelk. Linear function〈θ,Φ(·)〉 overX are replaced with functionsf ∈ H, which
yields an exponential RKHS model

p(x; f) = exp[f(x)− g(f)], f ∈ H :=

{
f : f(·) =

∑
x∈S

αxk(·, x), S ⊆ X, |S| <∞

}
. (95)

A justification for using exponential RKHS families with rich canonical statistics as a generic way to
define non-parametric models stems from the fact that if the chosen kernelk is powerful enough, the
associated exponential families become universal density estimators. This can be made precise using the
concept of universal kernels (Steinwart [2002a], cf. Section 2).

Proposition 14 (Dense Densities)LetX be a measurable set with a fixedσ-finite measureν and denote
by P a family of densities onX with respect toν such thatp ∈ P is uniformly bounded from above and
continuous. Letk : X × X → R be a universal kernel forH. Then the exponential RKHS family of
densities generated byk according to Eq.(95)are dense inP in theL∞ sense.

Proof Let D := supp ‖p‖∞ and choseη = η(ε,D) > 0 appropriately (see below). By the universality
assumption for everyp ∈ P there existsf ∈ H such that‖f − ln p‖∞ < η. Exploiting the strict
convexity of the exp-function one gets thate−ηp < ef < eηp, which directly impliese−η < eg(f) =∫

X
ef(x)dν(x) < eη. Moreover‖ef − p‖∞ < D(eη − 1), and hence

‖p(f)− p‖∞ ≤ ‖ef − p‖∞ + ‖ef−g(f) − ef‖∞ < D(eη − 1)(1 + eη) < 2Deη(eη − 1) ,

where we utilized the upper bound

‖ef−g(f) − ef‖∞ ≤ |e−g(f) − 1| · ‖ef‖∞ < (eη − 1)‖ef‖∞ < Deη(eη − 1).

Equaling withε and solving forη results inη(ε,D) = ln
(

1
2 + 1

2

√
1 + 2ε

D

)
> 0.
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5.1.3 Conditional Exponential Models
For the rest of the paper, we will focus on the case of predictive or conditional modeling with a –

potentially compound or structured – response variableY and predictor variablesX. Taking up the
concept of joint kernels introduced in the previous section, we will investigate conditional models that
are defined by functionsf : X× Y→ R from some RKHSH overX× Y with kernelk as follows

p(y|x; f) = exp [f(x, y)− g(x, f)] , where g(x, f) := ln
∫

Y

ef(x,y)dν(y) . (96)

Notice that in the finite-dimensional case we have a feature mapΦ : X×Y→ Rm from which parametric
models are obtained viaH :={f : ∃w, f(x, y) = f(x, y;w) := 〈w,Φ(x, y)〉} and eachf can be identi-
fied with its parameterw. Let us discuss some concrete examples to illustrate the rather general model
equation (96).

• Let Y be univariate and defineΦ(x, y) = yΦ(x). Then simplyf(x, y;w) = 〈w,Φ(x, y)〉 =
yf̃(x;w), with f̃(x;w) := 〈w,Φ(x)〉 and the model equation in (96) reduces to

p(y|x;w) = exp [y 〈w,Φ(x)〉 − g(x,w)] . (97)

This is ageneralized linear model(GLM) (Nelder and Wedderburn [1972], McCullagh and Nelder
[1983]) with a canonical link, i.e. the canonical parameters depend linearly on the covariatesΦ(x).
For different response scales we get several well-known models such as, for instance, logistic re-
gression wherey ∈ {−1, 1}.
• In the non-parameteric extension of generalized linear models following [Green and Yandell, 1985,

O’Sullivan et al., 1986] the parametric assumption on the linear predictorf̃(x;w) = 〈w,Φ(x)〉 in
GLMs is relaxed by requiring that̃f comes from some sufficiently smooth class of functions, namely
a RKHS defined overX. In combination with a parametric part, this can also be used to define semi-
parametric models. Popular choices of kernels include the ANOVA kernel investigated in Wahba
et al. [1995]. This is a special case of defining joint kernels from an existing kernelk over inputs via
k((x, y), (x′, y′)) := yy′k(x, x′).
• Joint kernels provide a powerful framework for prediction problems with structured outputs. An il-

luminating example is statistical natural language parsing with lexicalized probabilistic context free
grammars (cf. Magerman [1996]). Herex will be an English sentence andy a parse tree forx, i.e. a
highly structured and complex output. The productions of the grammar are known, but the condi-
tional probabilityp(y|x) needs to be estimated based on training data of parsed/annotated sentences.
In the simplest case, the extracted statisticsΦ may encode the frequencies of the use of different pro-
ductions in a sentence with known parse tree. More sophisticated feature encodings are discussed in
Taskar et al. [2004], Zettlemoyer and Collins [2005]. The conditional modeling approach provide al-
ternatives to state-of-the art approaches that estimate joint modelsp(x, y) with maximum likelihood
or maximum entropy (Charniak [2000]) and obtain predictive models by conditioning onx.

5.1.4 Risk Functions for Model Fitting
There are different inference principles to determine the optimal functionf ∈ H for the conditional

exponential model in (96). One standard approach to parametric model fitting is to maximize the condi-
tional log-likelihood – or equivalently – minimize a logarithmic loss, a strategy pursued in the Conditional
Random Field (CRF) approach of Lafferty et al. [2001]. Here we consider the more general case of min-
imizing a functional that includes a monotone function of the Hilbert space norm‖f‖H as a stabilizer
(cf. Wahba [1990]). This reduces to penalized log-likelihood estimation in the finite dimensional case,

C ll (f ; S) :=− 1
n

n∑
i=1

ln p(yi|xi; f), f̂ ll (S) := argmin
f∈H

λ

2
‖f‖2H + C ll (f ; S) . (98)
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• For the parametric case, Lafferty et al. [2001] have employed variants of improved iterative scal-
ing (Della Pietra et al. [1997], Darroch and Ratcliff [1972]) to optimize Eq.(98) whereas Sha and
Pereira [2003] have investigated preconditioned conjugate gradient descent and limited memory
quasi-Newton methods.
• In order to optimize Eq.(98) one usually needs to compute expectations of the canoncial statistics

Ef [Φ(Y, x)] at sample pointsx = xi, which requires the availability of efficient inference algo-
rithms.

As we have seen in the case of classification and regression, likelihood-based criteria are by no means
the only justifiable choice and large margin methods offer an interesting alternative. To that extend,
we will present a general formulation of large margin methods for response variables over finite sample
spaces that is based on the approach suggested by Altun et al. [2003] and Taskar et al. [2003]. Define

r(x, y; f) :=f(x, y)−max
y′ 6=y

f(x, y′) = min
y′ 6=y

log
p(y|x; f)
p(y′|x; f)

and r(S; f) :=
n

min
i=1

r(xi, yi; f) . (99)

Here r(S; f) generalizes the notion of separation margin used in SVMs. Since the log-odds ratio is
sensitive to rescaling off , i.e.r(x, y;βf) = βr(x, y; f), we need to constrain‖f‖H to make the problem
well-defined. We thus replacef by φ−1f for some fixed dispersion parameterφ > 0 and define the
maximum margin problem̂fmm(S) :=φ−1 argmax‖f‖H=1 r(S; f/φ). For the sake of the presentation, we
will drop φ in the following.9 Using the same line of arguments as was used in Section 3, the maximum
margin problem can be re-formulated as a constrained optimization problem

f̂mm(S) := argmin
f∈H

1
2
‖f‖2H, s.t. r(xi, yi; f) ≥ 1,∀i ∈ [n] , (100)

provided the latter is feasible, i.e. if there existsf ∈ H such thatr(S; f) > 0. To make the connection to
SVMs consider the case of binary classification withΦ(x, y) = yΦ(x), f(x, y;w) = 〈w, yΦ(x)〉, where
r(x, y; f) = 〈w, yΦ(x)〉 − 〈w,−yΦ(x)〉 = 2y 〈w,Φ(x)〉 = 2ρ(x, y;w). The latter is twice the standard
margin for binary classification in SVMs.

A soft margin version can be defined based on the Hinge loss as follows

Chl(f ; S) :=
1
n

n∑
i=1

min{1− r(xi, yi; f), 0} , f̂ sm(S) := argmin
f∈H

λ

2
‖f‖2H + Chl(f, S) . (101)

• An equivalent formulation using slack variablesξi as discussed in Section 3 can be obtained by
introducing soft-margin constraintsr(xi, yi; f) ≥ 1 − ξi, ξi ≥ 0 and by definingChl = 1

nξi. Each
non-linear constraint can be further expanded into|Y| linear constraintsf(xi, yi)−f(xi, y) ≥ 1−ξi
for all y 6= yi.
• Prediction problems with structured outputs often involve task-specific loss function4 : Y×Y→ R

discussed in Section 3.4. As suggested in Taskar et al. [2003] cost sensitive large margin methods
can be obtained by defining re-scaled margin constraintsf(xi, yi)− f(xi, y) ≥ 4(yi, y)− ξi.
• Another sensible option in the parametric case is to minimize an exponential risk function of the

following type

f̂ exp(S) := argmin
w

1
n

n∑
i=1

∑
y 6=yi

exp [f(xi, yi;w)− f(xi, y;w)] . (102)

This is related to the exponential loss used in the AdaBoost method of Freund and Schapire [1996].
Since we are mainly interested in kernel-based methods here, we refrain from further elaborating on
this connection.

9We will not deal with the problem of how to estimateφ here; note, however, that one does need to knowφ in
order to make an optimal determinisitic prediction.

31



5.1.5 Generalized Representer Theorem and Dual Soft-Margin Formulation
It is crucial to understand how the representer theorem applies in the setting of arbitrary discrete output

spaces, since a finite representation for the optimalf̂ ∈ {f̂ ll , f̂ sm} is the basis for constructive model
fitting. Notice that the regularized log-loss as well as the soft margin functional introduced above depend
not only on the values off on the sampleS, but rather on the evaluation off on the augmented sample
S̃ :={(xi, y) : i ∈ [n], y ∈ Y}. This is the case, because for eachxi, output valuesy 6= yi not observed
with xi show up in the log-partition functiong(xi, f) in (96) as well as in the log-odds ratios in (99). This
adds an additional complication compared to binary classification.

Corollary 15 Denote byH an RKHS onX × Y with kernelk and letS = ((xi, yi))i∈[n]. Further-

more letC(f ; S) be a functional depending onf only via its values on the augmented sampleS̃.
Let Ω be a strictly monotonically increasing function. Then the solution of the optimization problem
f̂(S) := argminf∈H C(f ; S̃) + Ω(‖f‖H) can be written as:

f̂(·) =
n∑
i=1

∑
y∈Y

βiyk(·, (xi, y)) (103)

This follows directly from Theorem 11.
Let us focus on the soft margin maximizerf̂ sm. Instead of solving (101) directly, we first derive the

dual program, following essentially the derivation in Section 3.

Proposition 16 (Tsochantaridis et al. [2005])The minimizerf̂ sm(S) can be written as in Corollary 15
where the expansion coefficients can be computed from the solution of the following convex quadratic
program

α∗ =argmin
α

1
2

n∑
i,j=1

∑
y 6=yi

∑
y′ 6=yj

αiyαjy′Kiy,jy′ −
n∑
i=1

∑
y 6=yi

αiy

 (104a)

s.t. λn
∑
y 6=yi

αiy ≤ 1, ∀i ∈ [n]; αiy ≥ 0, ∀i ∈ [n], y ∈ Y , (104b)

whereKiy,jy′ :=k((xi, yi), (xj , yj)) + k((xi, y), (xj , y′))− k((xi, yi), (xj , y′))− k((xi, y), (xj , yj)).
Proof The primal program for soft-margin maximization can be expressed as

min
f∈H,ξ

R(f, ξ, S) :=
λ

2
‖f‖2H +

1
n

n∑
i=1

ξi, s.t. f(xi, yi)− f(xi, y) ≥ 1− ξi, ∀y 6= yi; ξi ≥ 0, ∀i ∈ [n] .

Introducing dual variablesαiy for the margin constraints andηi for the non-negativity constraints onξi
yields the Lagrange function (the objective has been divided byλ)

L(f, α) :=
1
2
〈f, f〉H +

1
λn

n∑
i=1

ξi −
n∑
i=1

∑
y 6=yi

αiy [f(xi, yi)− f(xi, y)− 1 + ξi]−
n∑
i=1

ξiηi .

Solving forf results in

∇fL(f, α) = 0 ⇐⇒ f(·) =
n∑
i=1

∑
y 6=yi

αiy [k(·, (xi, yi))− k(·, (xi, y))]
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since forf ∈ H, ∇ff(x, y) = k(·, (x, y)). Solving forξi impliesλn
∑
y 6=yi

αiy ≤ 1 and plugging the
solution back intoL yields the (negative) objective function in the claim. Finally note that the represen-
tation in (103)can be obtained by identifying

βiy :=

{
−αiy if y 6= yi∑
y 6=yi

αiy if y = yi

• The multiclass SVM formulation of Crammer and Singer [2001] can be recovered as a special case
for kernels that are diagonal with respect to the outputs, i.e.k((x, y), (x′, y′)) = δy,y′k(x, x′).
Notice that in this case the quadratic part in Eq. (104a) simplifies to∑

i,j

k(xi, xj)
∑
y

αiyαjy
[
1 + δyi,yδyj ,y − δyi,y − δyj ,y

]
.

• The pairs(xi, y) for whichαiy > 0 are thesupport pairs, generalizing the notion of support vectors.
As in binary SVMs their number can be much smaller than the total number of constraints. Notice
also that in the final expansion contributionsk(·, (xi, yi)) will get non-negative weights whereas
k(·, (xi, y)) for y 6= yi will get non-positive weights. Overall one gets a balance equationβiyi

−∑
y 6=yi

βiy = 0 for every data point.

5.1.6 Sparse Approximation

Proposition 16 shows that sparseness in the representation off̂ sm is linked to the fact that only few
αiy in the solution to the dual problem in Eq. (104) are non-zero. Note that each of these Lagrange
multipliers is linked to the corresponding soft margin constraintf(xi, yi) − f(xi, y) ≥ 1 − ξi. Hence,
sparseness is achieved, if only few constraints are active at the optimal solution. While this may or may
not be the case for a given sample, one can still exploit this observation to define a nested sequence of
relaxations, where margin constraint are incrementally added. This corresponds to a constraint selection
algorithm (cf. Bertsimas and Tsitsiklis [1997]) for the primal or – equivalently – a variable selection or
column generation method for the dual program and has been investigated in Tsochantaridis et al. [2005].
Solving a sequence of increasingly tighter relaxations to a mathematical problem is also known as an
outer approximation. In particular, one may iterate through the training examples according to some
(fair) visitation schedule and greedily select constraints that are most violated at the current solutionf ,
i.e. for thei-th instance one computes

ŷi = argmax
y 6=yi

f(xi, y) = argmax
y 6=yi

p(y|xi; f) , (105)

and then strengthens the current relaxation by includingαiŷi
in the optimization of the dual iff(xi, yi)−

f(xi, ŷi) < 1 − ξi − ε. Hereε > 0 is a pre-defined tolerance parameter. It is important to understand
how many strengthening steps are necessary to achieve a reasonable close approximation to the original
problem. The following theorem provides an answer:

Theorem 17 (Tsochantaridis et al. [2005])Let R̄ = maxi,yKiy,iy and choseε > 0. A sequential
strengthening procedure, which optimizes Eq.(101)by greedily selectingε-violated constraints, will find
an approximate solution where all constraints are fulfilled within a precision ofε, i.e. r(xi, yi; f) ≥
1− ξi − ε after at most2nε ·max

{
1, 4R̄2

λn2ε

}
steps.
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Corollary 18 Denote by(f̂ , ξ̂) the optimal solution of a relaxation of the problem in Proposition 16,
minimizingR(f, ξ, S) while violating no constraint by more thanε (cf. Theorem 17). Then

R(f̂ , ξ̂, S) ≤ R(f̂ sm, ξ∗, S) ≤ R(f̂ , ξ̂, S) + ε

where(f̂ sm, ξ∗) is the optimal solution of the original problem.

Proof The first inequality follows from the fact that(f̂ , ξ̂) is an optimal solution to a relaxation, the
second from the observation that by settingξ̃ = ξ̂ + ε one gets an admissible solution(f̂ , ξ̃) such that
R(f̂ , ξ̃, S) = λ

2 ‖f̂‖
2
H + 1

n

∑n
i=1(ξ̂i + ε) = R(f̂ , ξ̂, S) + ε.

• Combined with an efficient QP solver, the above theorem guarantees a runtime polynomial inn, ε−1,
R̄, andλ−1. This holds irrespective of special properties of the data set utilized, the only exception
being the dependeny on the sample pointsxi is through the radius̄R.
• The remaining key problem is how to compute Eq. (105) efficiently. The answer depends on the

specific form of the joint kernelk and/or the feature mapΦ. In many cases, efficient dynamic
programming techniques exists, whereas in other cases one has to resort to approximations or use
other methods to identify a set of candidate distractorsYi ⊂ Y for a training pair(xi, yi) (cf. Collins
[2000]). Sometimes one may also have search heuristics available that may not find the solution to
Eq. (105), but that find (other)ε-violating constraints with a reasonable computational effort.

5.1.7 Generalized Gaussian Processes Classification
The model Eq. (96) and the minimization of the regularized log-loss can be interpreted as a gener-

alization of Gaussian process classification (Rasmussen and Williams [2006], Altun et al. [2004b]) by
assuming that(f(x, ·))x∈X is a vector-valued zero mean Gaussian process; note that the covariance func-
tionC is defined over pairsX×Y. For a given sampleS, define a multi-index vectorF (S) :=(f(xi, y))i,y
as the restriction of the stochastic processf to the augmented samplẽS. Denote the kernel matrix by
K = (Kiy,jy′), whereKiy,jy′ :=C((xi, y), (xj , y′)) with indicesi, j ∈ [n] andy, y′ ∈ Y, so that in
summary:F (S) ∼ N(0,K). This induces a predictive model via Bayesian model integration according
to

p(y|x; S) =
∫
p(y|F (x, ·))p(F |S)dF , (106)

wherex is a test point that has been included in the sample (transductive setting). For an i.i.d. sample the
log-posterior forF can be written as

ln p(F |S) = −1
2
FTK−1F +

n∑
i=1

[f(xi, yi)− g(xi, F )] + const . (107)

Invoking the representer theorem forF̂ (S) := argmaxF ln p(F |S), we know that

F̂ (S)iy =
n∑
j=1

∑
y′∈Y

αiyKiy,jy′ , (108)

which we plug into Eq. (107) to arrive at

min
α
αTKα−

n∑
i=1

αTKeiyi
+ log

∑
y∈Y

exp
[
αTKeiy

] , (109)
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were eiy denotes the respective unit vector. Notice that forf(·) =
∑
i,y αiyk(·, (xi, y)) the first

term is equivalent to the squared RKHS norm off ∈ H since 〈f, f〉H =
∑
i,j

∑
y,y′ αiyαjy′

〈k(·, (xi, y)), k(·, (xj , y′))〉. The latter inner product reduces tok((xi, y), (xj , y′)) due to the reproduc-
ing property. Again, the key issue in solving Eq. (109) is how to achieve spareness in the expansion forF̂ .

5.2 Markov Networks and Kernels

In Section 5.1 no assumptions about the specific structure of the joint kernel defining the model in Eq. (96)
has been made. In the following, we will focus on a more specific setting with multiple outputs, where
dependencies are modeled by a conditional independence graph. This approach is motivated by the
fact that independently predicting individual responses based on marginal response models will often be
suboptimal and explicitly modelling these interactions can be of crucial importance.

5.2.1 Markov Networks and Factorization Theorem

Denote predictor variables byX, response variables byY and defineZ :=(X,Y ) with associated
sample spaceZ. We use Markov networks as the modeling formalism for representing dependencies
between covariates and response variables as well as interdependencies among response variables.

Definition 19 A conditional independence graph(or Markov network) is an undirected graphG =
(Z,E) such that for any pair of variables(Zi, Zj) 6∈ E if and only ifZi⊥⊥Zj |Z − {Zi, Zj}.

The above definition is based on the pairwise Markov property, but by virtue of the separation theorem
(cf. e.g. Whittaker [1990]) this implies the global Markov property for distributions with full support.
The global Markov property says that for disjoint subsetsU, V,W ⊆ Z whereW separatesU from V in
G one has thatU⊥⊥V |W . Even more important in the context of this paper is the factorization result due
to Hammersley and Clifford [1971] and Besag [1974].

Theorem 20 Given a random vectorZ with conditional independence graphG. Any density function for
Z with full support factorizes overC(G), the set of maximal cliques ofG as follows:

p(z) = exp

 ∑
c∈C(G)

fc(zc)

 (110)

wherefc are clique compatibility functions dependent onz only via the restriction on clique configura-
tionszc.

The significance of this result is that in order to specify a distribution forZ, one only needs to specify or
estimate the simpler functionsfc.

5.2.2 Kernel Decomposition over Markov Networks

It is of interest to analyse the structure of kernelsk that generate Hilbert spacesH of functions that are
consistent with a graph.

Definition 21 A functionf : Z → R is compatible with a conditional independence graphG, if f
decomposes additively asf(z) =

∑
c∈C(G) fc(zc) with suitably chosen functionsfc. A Hilbert spaceH

overZ is compatible withG, if every functionf ∈ H is compatible withG. Suchf andH are also called
G-compatible.
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Proposition 22 LetH with kernelk be aG-compatible RKHS. Then there are functionskcd : Zc×Zd →
R such that the kernel decomposes as

k(u, z) =
∑
c,d∈C

kcd(uc, zd) .

Proof Let z ∈ Z, thenk(·, z) = k(z, ·) ∈ H and by assumption for allu, z ∈ Z there exist functions
kd(·; z) such that

k(u, z) =
∑
d

kd(ud; z) =
∑
c

kc(zc;u) .

The left hand sum involves functions restricted to cliques of the first argument, whereas the right hand
sum involves functions restricted to cliques of the second argument. Then the following simple lemma
shows that there have to be functionkcd(uc, zd) as claimed.

Lemma 23 LetX be a set ofn-tupels andfi, gi : X× X→ R for i ∈ [n] functions such thatfi(x, y) =
fi(xi, y) andgi(x, y) = gi(x, yi). If

∑
i fi(xi, y) =

∑
j gj(x, yj) for all x, y, then there exist functions

hij such that
∑
i fi(xi, y) =

∑
i,j hij(xi, yj).

• Proposition 22 is useful for the design of kernels, since it states that only kernels allowing an additive
decomposition into local functionskcd are compatible with a given Markov networkG. Lafferty et al.
[2004] have pursued a similar approach by considering kernels for RKHS with functions defined
overZC := {(c, zc) : c ∈ c, zc ∈ Zc}. In the latter case one can even deal with cases where the
conditional dependency graph is (potentially) different for every instance.
• An illuminating example of how to design kernels via the decomposition in Proposition 22 is the

case ofconditional Markov chains, for which models based on joint kernels have been proposed in
Lafferty et al. [2001], Collins [2000], Altun et al. [2003], Taskar et al. [2003]. Given an input se-
quencesX = (Xt)t∈[T ], the goal is to predict a sequence of labels or class variablesY = (Yt)t∈[T ],
Yt ∈ Σ. Dependencies between class variables are modeled in terms of a Markov chain, whereas
outputsYt are assumed to depend (directly) on an observation window(Xt−r, . . . , Xt, . . . , Xt+r).
Notice that this goes beyond the standard Hidden Markov Model structure (cf. Rabiner [1989]) by al-
lowing for overlapping features (r ≥ 1). For simplicty we focus on a window size ofr = 1, in which
case the clique set is given byC :={ct :=(xt, yt, yt+1), c′t :=(xt+1, yt, yt+1) : t ∈ [T − 1]}. We as-
sume an input kernelk is given and introduce indicator vectors (or dummy variates)I(Y{t,t+1}) :=
(Iω,ω′(Y{t,t+1}))ω,ω′∈Σ. Now we can define the local kernel functions as

kcd(zc, z′d) :=
〈
I(y{s,s+1}), I(y′{t,t+1})

〉
×

{
k(xs, xt) if c = cs andd = ct

k(xs+1, xt+1) if c = c′s andd = c′t
(111)

Notice that the inner product between indicator vectors is zero, unless the variable pairs are in the
same configuration.
Conditional Markov chain models have found widespread applications, in natural language process-
ing (e.g. for part of speech tagging and shallow parsing, cf. Sha and Pereira [2003]), in information
retrieval (e.g. for information extraction, cf. McCallum et al. [2005]), or in computational biology
(e.g. for gene prediction, cf. Culotta et al. [2005]).

5.2.3 Clique-based Sparse Approximation
Proposition 22 immediately leads to an alternative version of the representer theorem as observed by

Lafferty et al. [2004] and Altun et al. [2004b].
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Corollary 24 If H is G-compatible then in the same setting as in Corollary 15, the optimizerf̂ can be
written as

f̂(u) =
n∑
i=1

∑
c∈C

∑
yc∈Yc

βic,yc

∑
d∈C

kcd((xic, yc), ud) (112)

herexic are the variables ofxi belonging to cliquec andYc is the subspace ofZc that contains response
variables.

Proof According to Proposition 23 the kernelk of H can be written ask(z, u) =
∑
c,d kcd(zc, ud)

plugging this into the expansion of Corollary 15 yields

f̂(u) =
n∑
i=1

∑
y∈Y

βiy
∑
c,d∈C

kcd((xic, yc), ud) =
n∑
i=1

∑
c,d∈C

∑
yc∈Yc

kcd((xic, yc), ud)
∑
y′

δyc,y′cβiy′ .

Settingβic,yc
:=

∑
y′ δyc,y′cβiy′ completes the proof.

• Notice that the number of parameters in the representation Eq. (112) scales withn ·
∑
c∈C |Yc|

as opposed ton · |Y| in Eq. (103). For cliques with reasonably small state spaces this will be a
significantly more compact representation. Notice also that the evaluation of functionskcd will
typically be more efficient than evaluatingk.

• In spite of this improvement, the number of terms in the expansion in Eq. (112) may in practice still
be too large. In this case, one can pursue a reduced set approach, which selects a subset of variables
to be included in a sparsified expansion. This has been proposed in Taskar et al. [2003] for the soft
margin maximization problem as well as in Lafferty et al. [2004], Altun et al. [2004a] for conditional
random fields and Gaussian processes. For instance, in Lafferty et al. [2004] parametersβicyc

that
maximize the functional gradient of the regularized log-loss are greedily included in the reduced
set. In Taskar et al. [2003] a similar selection criterion is utilized with respect to margin violations,
leading to an SMO-like optimization algorithm (cf. Platt [1999]).

5.2.4 Probabilistic Inference
In dealing with structured or interdependent response variables, computing marginal probabilities of

interest or computing the most probable response (cf. Eq. (105)) may be non-trivial. However, for depen-
dency graphs with small tree width efficient inference algorithms exist, such as the junction tree algorithm
(cf. Jensen et al. [1990], Dawid [1992]) and variants thereof. Notice that in the case of the conditional
or hidden Markov chain, the junction tree algorithm is equivalent to the well-known forward-backward
algorithm Baum [1972]. Recently, a number of approximate inference algorithms has been developed to
deal with dependency graphs for which exact inference is not tractable (cf. e.g. Wainwright and Jordan
[2003]).

6 Kernel Methods for Unsupervised Learning

This section discusses various methods of data analysis by modeling the distribution of data in feature
space. To that extent, we study the behavior ofΦ(x) by means of rather simple linear methods, which
has implications for nonlinear methods on the original data spaceX. In particular, we will discuss the
extension of PCA to Hilbert spaces, which allows for image denoising, clustering, and nonlinear dimen-
sionality reduction, the study of covariance operators for the measure of independence, the study of mean
operators for the design of two-sample tests, and the modeling of complex dependencies between sets of
random variables via kernel dependency estimation and canonical correlation analysis.
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6.1 Kernel Principal Component Analysis

Principal Component Analysis (PCA) is a powerful technique for extracting structure from possibly high-
dimensional data sets. It is readily performed by solving an eigenvalue problem, or by using iterative
algorithms which estimate principal components. For reviews of the existing literature, see Jolliffe [1986]
and Diamantaras and Kung [1996]; some of the classical papers are Pearson [1901], Hotelling [1933],
and Karhunen [1946].

PCA is an orthogonal transformation of the coordinate system in which we describe our data. The new
coordinate system is obtained by projection onto the so-called principal axes of the data. A small number
of principal components is often sufficient to account for most of the structure in the data, e.g. for the
purpose of principal component regression [Draper and Smith, 1981].

The basic idea is strikingly simple: denote byX = {x1, . . . , xn} ann-sample drawn fromP(x). Then
the covariance operatorC is given byC = E

[
(x−E [x])(x−E [x])>

]
. PCA aims at estimating leading

eigenvectors ofC via the empirical estimateCemp = Eemp

[
(x−Eemp [x])(x−Eemp [x])>

]
. If X is

d-dimensional, then the eigenvectors can be computed inO(d3) time [Press et al., 1994].

The problem can also be posed in feature space [Schölkopf et al., 1998] by replacingx with Φ(x).
In this case, however, it is impossible to compute the eigenvectors directly. Yet, note that the image of
Cemp lies in the span of{Φ(x1), . . . ,Φ(xn)}. Hence it is sufficient to diagonalizeCemp in that subspace.
In other words, we replace theouter productCemp by an inner product matrix, leaving the eigenvalues
unchanged, which can be computed efficiently. Usingw =

∑n
i=1 αiΦ(xi) it follows thatα needs to

satisfyPKPα = λα, whereP is the projection operator withPij = δij − n−2 andK is the kernel
matrix onX.

Note that the problem can also be recovered as one of maximizing someContrast[f,X] subject to
f ∈ F. This means that the projections onto the leading eigenvectors correspond to the most reliable
features. This optimization problem also allows us to unify various feature extraction methods as follows:

• ForContrast[f,X] = Varemp[f,X] andF = {〈w, x〉 subject to‖w‖ ≤ 1} we recover PCA.
• ChangingF to F = {〈w,Φ(x)〉 subject to‖w‖ ≤ 1} we recover Kernel PCA.
• For Contrast[f,X] = Curtosis[f,X] andF = {〈w, x〉 subject to‖w‖ ≤ 1} we have Projection

Pursuit [Huber, 1985, Friedman and Tukey, 1974]. Other contrasts lead to further variants, e.g. the
Epanechikov kernel, entropic contrasts, etc. [Cook et al., 1993, Friedman, 1987, Jones and Sibson,
1987].
• If F is a convex combination of basis functions and the contrast function is convex inw one obtains

computationally efficient algorithms, as the solution of the optimization problem can be found at
one of the vertices [Rockafellar, 1970, Schölkopf and Smola, 2002].

Subsequent projections are obtained, e.g. by seeking directions orthogonal tof or other computationally
attractive variants thereof.

Kernel PCA has been applied to numerous problems, from preprocessing and invariant feature extrac-
tion [Mika et al., 2003] by simultaneous diagonalization of the data and a noise covariance matrix, to
image denoising [Mika et al., 1999] and super-resolution [Kim et al., 2005]. The basic idea in the latter
case is to obtain a set of principal directions in feature spacew1, . . . , wl, obtained from noise-free data,
and to project the imageΦ(x) of a noisy observationx onto the space spanned byw1, . . . , wl. This yields
a “denoised” solutioñΦ(x) in feature space. Finally, to obtain the pre-image of this denoised solution

one minimizes
∥∥∥Φ(x′)− Φ̃(x)

∥∥∥. The fact that projections onto the leading principal components turn out

to be good starting points for pre-image iterations is further exploited in kernel dependency estimation
(Section 6.4). Kernel PCA can be shown to contain several popular dimensionality reduction algorithms
as special cases, including LLE, Laplacian Eigenmaps, and (approximately) Isomap [Ham et al., 2004].
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6.2 Canonical Correlation and Measures of Independence

Given two samplesX,Y canonical correlation analysis [Hotelling, 1936] aims at finding directions of
projectionu, v such that the correlation coefficient betweenX andY is maximized. That is,(u, v) are
given by

argmax
u,v

Varemp [〈u, x〉]−1 Varemp [〈v, y〉]−1 Eemp [〈u, x−Eemp [x]〉 〈v, y −Eemp [y]〉] . (113)

This problem can be solved by finding the eigensystem ofC
− 1

2
x CxyC

− 1
2

y , whereCx, Cy are the covariance
matrices ofX andY andCxy is the covariance matrix betweenX andY , respectively. Multivariate
extensions are discussed in [Kettenring, 1971].

CCA can be extended to kernels by means of replacing linear projections〈u, x〉 by projections in
feature space〈u,Φ(x)〉. More specifically, Bach and Jordan [2002] used the so-derived contrast to ob-
tain a measure of independence and applied it to Independent Component Analysis with great success.
However, the formulation requires an additional regularization term to prevent the resulting optimization
problem from becoming distribution independent. The problem is that bounding the variance of each
projections is not a good way to control the capacity of the function class. Instead, one may modify the
correlation coefficient by normalizing by the norms ofu andv. Hence we maximize

‖u‖−1 ‖v‖−1 Eemp [〈u, x−Eemp [x]〉 〈v, y −Eemp [y]〉] , (114)

which can be solved by diagonalization of the covariance matrixCxy. One may check that in feature
space, this amounts to finding the eigenvectors of(PKxP )

1
2 (PKyP )

1
2 [Gretton et al., 2005b].

6.3 Measures of Independence

Rényi [1959] showed that independence between random variables is equivalent to the condition of van-
ishing covarianceCov [f(x), g(y)] = 0 for all C1 functionsf, g bounded byL∞ norm 1 on X andY.
In Das and Sen [1994], Dauxois and Nkiet [1998], Bach and Jordan [2002], Gretton et al. [2005c], and
Gretton et al. [2005a] a constrained empirical estimate of the above criterion is used. That is, one studies

Λ(X,Y,F,G) := sup
f,g

Covemp [f(x), g(y)] subject tof ∈ F andg ∈ G. (115)

This statistic is often extended to use the entire seriesΛ1, . . . ,Λd of maximal correlations where each
of the function pairs(fi, gi) are orthogonal to the previous set of terms. More specifically Dauxois and
Nkiet [1998] restrictF,G to finite-dimensional linear function classes subject to theirL2 norm bounded
by 1, Bach and Jordan [2002] use functions in the RKHS for which some sum of the`n2 and the RKHS
norm on the sample is bounded. Martin [2000], Cock and Moor [2002], and Vishwanathan et al. [2006]
show that degrees of maximum correlation can also be viewed as an inner product between subspaces
spanned by the observations.

Gretton et al. [2005a] use functions with bounded RKHS norm only, which provides necessary and
sufficient criteria if kernels are universal. That is,Λ(X,Y,F,G) = 0 if and only if x andy are indepen-
dent. MoreovertrPKxPKyP has the same theoretical properties and it can be computed much more
easily in linear time, as it allows for incomplete Cholesky factorizations. HereKx andKy are the kernel
matrices onX andY respectively.

The above criteria can be used to derive algorithms for Independent Component Analysis [Bach and
Jordan, 2002, Gretton et al., 2005a]. In this case one seeks rotations of the dataS = V X whereV ∈
SO(d) such thatS is coordinate-wise independent, i.e.P(S) =

∏d
i=1 P(si). This approach provides

the currently best performing independence criterion, although it comes at a considerable computational
cost. For fast algorithms, one should consider the work of Cardoso [1998], Hyvärinen et al. [2001], Lee
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et al. [2000]. Also the work of Chen and Bickel [2005] and Yang and Amari [1997] is of interest in this
context.

Note that a similar approach can be used to develop two-sample tests based on kernel methods. The
basic idea is that for universal kernels the map between distributions and points on the marginal polytope
µ : p → Ex∼p[φ(x)] is bijective and consequently it imposes a norm on distributions. This builds on
the ideas of Fortet and Mourier [1953]. The corresponding distanced(p, q) := ‖µ[p]− µ[q]‖ leads to a
U-statistic which allows one to compute empirical estimates of distances between distributions efficiently
Borgwardt et al. [2006].

6.4 Kernel Dependency Estimation

A large part of the previous discussion revolved around estimating dependencies between sampleX and
Y for rather structured spacesY, in particular (83). In general, however, such dependencies can be hard
to compute. Weston et al. [2003] proposed an algorithm which allows one to extend standard regularized
LS regression models, as described in Section 3.3, to cases whereY has complex structure.

It works by recasting the estimation problem as alinear estimation problem for the mapf : Φ(x) →
Φ(y) and then as a nonlinear pre-image estimation problem for findingŷ := argminy ‖f(x)− Φ(y)‖ as
the point inY closest tof(x).

SinceΦ(y) is a possibly infinite dimensional space, which may lead to problems of capacity of the es-
timator, Weston et al. [2003] restrictf to the leading principal components ofΦ(y) and subsequently they
perform regularized LS regression onto each of the projections〈vj ,Φ(y)〉 separately, yielding functions
fj . This yields an estimate off via f(x) =

∑
j vjfj(x). This works well on strings and other structured

data. This problem can be solved directly [Cortes et al., 2005] without the need for subspace projections.
The authors apply it to the analysis of sequence data.

7 Conclusion

We have summarized some of the advances in the field of machine learning with positive definite ker-
nels. Due to lack of space this article is by no means comprehensive, in particular, we were not able to
cover statistical learning theory, which is often cited as providing theoretical support for kernel methods.
However, we nevertheless hope that the main ideas that make kernel methods attractive became clear.
In particular, these include the fact that kernels address the following three major issues of learning and
inference:

• they formalize the notion ofsimilarity of data
• they provide arepresentationof the data in an associated reproducing kernel Hilbert space
• they characterize the function class used for estimation via the representer theorem (see Eqs. (46)

and (112))

We have explained a number of approaches where kernels are useful. Many of them involve the substi-
tution of kernels for dot products, thus turning a linear geometric algorithm into a nonlinear one. This
way, obtains gets SVMs from hyperplane classifiers, and kernel PCA from linear PCA. There is, how-
ever, a more recent method of constructing kernel algorithsm, where the starting point is not a linear
algorithm, but a linear criterion (e.g., that two random variables have zero covariance, or that the means
of two samples are identical), which can be turned into a condition involving an optimization over a large
function class using kernels, thus yielding tests for independence of random variables, or tests for solving
the two-sample problem. We believe that these works, as well as the increasing amount of work on the
use of kernel methods for structured data, illustrates that we can expect significant further progress in the
field in the years to come.
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Smola, P. L. Bartlett, B. Scḧolkopf, and D. Schuurmans, editors,Advances in Large Margin Classifiers,
pages 115–132, Cambridge, MA, 2000. MIT Press.

R. Herbrich and R. C. Williamson. Algorithmic luckiness.Journal of Machine Learning Research, 3:
175–212, 2002.

R. Hettich and K. O. Kortanek. Semi-infinite programming: theory, methods, and applications.SIAM
Rev., 35(3):380–429, 1993.

45



D. Hilbert. Grundz̈uge einer allgemeinen Theorie der linearen Integralgleichungen.Nachrichten der
Akademie der Wissenschaften in Göttingen, Mathematisch-Physikalische Klasse, pages 49–91, 1904.

A. E. Hoerl and R. W. Kennard. Ridge regression: biased estimation for nonorthogonal problems.Tech-
nometrics, 12:55–67, 1970.
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A. J. Smola, B. Scḧolkopf, and K.-R. M̈uller. The connection between regularization operators and
support vector kernels.Neural Networks, 11(5):637–649, 1998.

I. Steinwart. On the influence of the kernel on the consistency of support vector machines.Journal of
Machine Learning Research, 2:67–93, 2002a.

I. Steinwart. Support vector machines are universally consistent.J. Complexity, 18:768–791, 2002b.

J. Stewart. Positive definite functions and generalizations, an historical survey.Rocky Mountain J. Math.,
6:409–434, 1976.

M. Stitson, A. Gammerman, V. Vapnik, V. Vovk, C. Watkins, and J. Weston. Support vector regression
with ANOVA decomposition kernels. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,
Advances in Kernel Methods - -Support Vector Learning, pages 285–292, Cambridge, MA, 1999. MIT
Press.

I. Takeuchi, Q.V. Le, T. Sears, and A.J. Smola. Nonparametric quantile estimation.Journal of Machine
Learning Research, 2006. forthcoming.

50



B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In Sebastian Thrun, Lawrence
Saul, and Bernhard Schölkopf, editors,Advances in Neural Information Processing Systems 16, 2003.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning. Max-margin parsing. InEmpirical Methods
in Natural Language Processing, 2004.

D. M. J. Tax and R. P. W. Duin. Data domain description by support vectors. In M. Verleysen, editor,
Proceedings ESANN, pages 251–256, Brussels, 1999. D Facto.

R. Tibshirani. Regression shrinkage and selection via the lasso.Journal of the Royal Statistical Society -
Series B, 58:267–288, 1996.

A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method.Soviet Math.
Dokl., 4:1035–1038, 1963.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and
interdependent output variables.Journal of Machine Learning Research, 2005.

A. B. Tsybakov. On nonparametric estimation of density level sets.Annals of Statistics, 25(3):948–969,
1997.

A.B. Tsybakov. Optimal aggregation of classifiers in statistical learning.Annals of Statistics, 32(1):
135–166, 2003.

C.J. van Rijsbergen.Information Retrieval. Butterworths, London, 2 edition, 1979.

V. Vapnik. Estimation of Dependences Based on Empirical Data. Springer, Berlin, 1982.

V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

V. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York, 1998.

V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their
probabilities.Theory of Probability and its Applications, 16(2):264–281, 1971.

V. Vapnik and A. Chervonenkis. The necessary and sufficient conditions for consistency in the empirical
risk minimization method.Pattern Recognition and Image Analysis, 1(3):283–305, 1991.

V. Vapnik, S. Golowich, and A. J. Smola. Support vector method for function approximation, regression
estimation, and signal processing. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors,Advances in
Neural Information Processing Systems 9, pages 281–287, Cambridge, MA, 1997. MIT Press.

V. Vapnik and A. Lerner. Pattern recognition using generalized portrait method.Automation and Remote
Control, 24:774–780, 1963.

S. V. N. Vishwanathan and A. J. Smola. Fast kernels for string and tree matching. In K. Tsuda,
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A. Zien, G. R̈atsch, S. Mika, B. Scḧolkopf, T. Lengauer, and K.-R. M̈uller. Engineering Support Vector
Machine Kernels That Recognize Translation Initiation Sites.Bioinformatics, 16(9):799–807, 2000.

52




