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A Review of Kernel Methods in Machine
Learning

Thomas Hofmann, Bernhard Sgkopf, Alexander J. Smola

Abstract. We review recent methods for learning with positive definite kernels. All these methods
formulate learning and estimation problems as linear tasks in a reproducing kernel Hilbert space (RKHS)
associated with a kernel. We cover a wide range of methods, ranging from simple classifiers to sophisti-
cated methods for estimation with structured data.

(AMS 2000 subject classifications: primary - 30C40 Kernel functions and applications; secondary -
68T05 Learning and adaptive systems. — Key words: machine learning, reproducing kernels, support
vector machines, graphical models)

1 Introduction

Over the last ten years, estimation and learning methods utilizing positive definite kernels have become
rather popular, particularly in machine learning. Since these methods have a stronger mathematical slant
than earlier machine learning methods (e.g., neural networks), there is also significant interest in the
statistics and mathematics community for these methods. The present review aims to summarize the
state of the art on a conceptual level. In doing so, we build on various sources (including [Vapnik,
1998, Burges, 1998, Cristianini and Shawe-Taylor, 2000, Herbrich, 2002] and in particulatk&uh

and Smola, 2002]), but we also add a fair amount of more recent material which helps unifying the
exposition. We have not had space to include proofs; they can be found either in the long version of the
present paper (see Hofmann et al. [2006]), in the references given, or in the above books.

The main idea of all the described methods can be summarized in one paragraph. Traditionally, theory
and algorithms of machine learning and statistics has been very well developed for the linear case. Real
world data analysis problems, on the other hand, often requires nonlinear methods to detect the kind
of dependencies that allow successful prediction of properties of interest. By using a positive definite
kernel, one can sometimes have the best of both worlds. The kernel corresponds to a dot product in a
(usually high dimensional) feature space. In this space, our estimation methods are linear, but as long as
we can formulate everything in terms of kernel evaluations, we never explicitly have to compute in the
high dimensional feature space.

The paper has three main sections: Section 2 deals with fundamental propekiesed$ with spe-
cial emphasis on (conditionally) positive definite kernels and their characterization. We give concrete
examples for such kernels and discuss kernels and reproducing kernel Hilbert spaces in the context of
regularization. Section 3 presents various approaches for estimating dependencies and analyzing data
that make use of kernels. We provide an overview of the problem formulations as well as their solution
using convex programming techniques. Finally, Section 4 examines the use of reproducing kernel Hilbert
spaces as a means to define statistical models, the focus being on structured, multidimensional responses.
We also show how such techniques can be combined with Markov networks as a suitable framework to
model dependencies between response variables.
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Figure 1: A simple geometric classification algorithm: given two classes of points (depicted by ‘0’ and ‘+'), compute
their meang:,, c— and assign a test inputto the one whose mean is closer. This can be done by looking at the dot
product between: — ¢ (wherec = (¢4 + ¢—)/2) andw := ¢y — c_, which changes sign as the enclosed angle
passes through/2. Note that the corresponding decision boundary is a hyperplane (the dotted line) orthogonal to
(from [Schblkopf and Smola, 2002]).

2 Kernels

2.1 An Introductory Example
Suppose we are given empirical data

(1,11), - (Tn,yn) € X X Y. Q)

Here, the domaiiX is some nonempty set that thguts(the predictor variables); are taken from; the
y; € Y are calledargets(the response variable). Here and belaw, € [n], where we use the notation
[n]:={1,...,n}.

Note that we have not made any assumptions on the dohaitmer than it being a set. In order to
study the problem of learning, we need additional structure. In learning, we want to be gbteetalize
to unseen data points. In the case of binary pattern recognition, given some new iaglit we want
to predict the correspondinge {+1} (more complex output domairswill be treated below). Loosely
speaking, we want to choogesuch thatz, y) is in some sensgimilar to the training examples. To this
end, we need similarity measures)iirand in{+1}. The latter is easier, as two target values can only be
identical or different. For the former, we require a function

E:XxX—R, (x,2')— k(z,2") (2)

satisfying, for allz, 2’ € X,
k(z,2') = (®(z), ©(2")) , 3)

where® maps into some dot product spakesometimes called tHeature spaceThe similarity measure
k is usually called &ernel| and® is called itsfeature map

The advantage of using such a kernel as a similarity measure is that it allows us to construct al-
gorithms in dot product spaces. For instance, consider the following simple classification algorithm,
whereY = {+1}. The idea is to compute the means of the two classes in the feature space,
C+ = o Ypiyimiry 2(2i), ande = L300 ) ®(x;), wheren, andn_ are the number of
examples with positive and negative target values, respectively. We then assign a ne@(ppitat the
class whose mean is closer to it. This leads to the prediction rule

y = sen((®(x),cy) — (®(x),c-) +) (4)



with b =  (|lc—||*> — [[c+[|?) . Substituting the expressions for yields

1 1
y=sen(— Y (@@ 0@)-— Y (0@),0@))+b), (5)
I S e AT

whereb = 4 (5 0y —1) K@i ;) = T (i) == 1) kai,2;)) -

Let us consider one well-known special case of this type of classifier. Assume that the class means
have the same distance to the origin (hehee 0), and that:(-, z) is a density for alk: € X. If the two
classes are equally likely and were generated from two probability distributions that are estimated

)= S k), p@) = Y k), ©)
T fiyi=t1} T {iyi=—1}

then (5) is the estimated Bayes decision rule, plugging in the estimatasdp_ for the true densities.

The classifier (5) is closely related to tBepport Vector Machine (SVNhHat we will discuss below. It
is linear in the feature space (4), while in the input domain, it is represented by a kernel expansion (5). In
both cases, the decision boundary is a hyperplane in the feature space; however, the normal vectors (for
(4), w = cy — c_) are usually rather differedt The normal vector not only characterizes the alignment
of the hyperplane, its length can also be used to construct tests for the equality of the two class-generating
distributions [Borgwardt et al., 2006].

2.2 Positive Definite Kernels

We have required that a kernel satisfy (3), i.e., correspond to a dot product in some dot product space. In
the present section, we show that the class of kernels that can be written in the form (3) coincides with
the class of positive definite kernels. This has far-reaching consequences. There are examples of positive
definite kernels which can be evaluated efficiently even though they correspond to dot products in infinite
dimensional dot product spaces. In such cases, substituting:’) for (®(x), ®(z’)), as we have done

in (5), is crucial. In the machine learning community, this substitution is calleleheel trick

Definition 1 (Gram matrix) Given a kernek and inputsey, ..., z, € X, then x n matrix
K = (k(zi,25))i; )
is called theGram matrix(or kernel matriy of k£ with respect tacy, ..., x,.

Definition 2 (Positive definite matrix) A realn x n symmetric matrix<;; satisfying

Zcichij > 0 (8)
4.J
for all ¢; € R is calledpositive definite If equality in (8) only occurs for; = --- = ¢, = 0 then we
shall call the matrixstrictly positive definite

Definition 3 (Positive definite kernel) Let X be a nonempty set. A functidn: X x X — R which for
alln € N,z; € X, i € [n] gives rise to a positive definite Gram matrix is callepgasitive definite kernel
A functionk : XX x X — R which for alln € N and distinctz; € X gives rise to a strictly positive definite
Gram matrix is called astrictly positive definite kernel

!As an aside, note that if we normalize the targets suchithaty; /|{j : y; = v:}|, in which case thg; sum to
zero, therjjw||* = (K, ggT>F, where(., .) . is the Frobenius dot product. If the two classes have equal size, then up
to a scaling factor involving K ||» andn, this equals th&ernel-target alignmendefined in [Cristianini et al., 2002].



Occasionally, we shall refer to positive definite kernels simply &sraels Note that for simplicity we
have restricted ourselves to the case of real valued kernels. However, with small changes, the below will
also hold for the complex valued case.

Since}_, ; cicj ((;), ®(x;)) = <Zi ci®(wi), )5 cjfb(xj)> > 0, kernels of the form (3) are posi-
tive definite for any choice ob. In particular, ifX is already a dot product space, we may chobge

be the identity. Kernels can thus be regarded as generalized dot products. Whilst they are not generally
bilinear, they share important properties with dot products, such as the Cauchy-Schwartz inequality:

Proposition 4 If k is a positive definite kernel, and , zo € X, then
k(x1,20)? < k(x1,21) - k(22 22). 9)

Proof The2 x2 Gram matrix with entries(;; = k(z;, x;) is positive definite. Hence both its eigenvalues
are nonnegative, and so is their products determinant, i.e.,

0 < K11 K2 — K12Ka1 = K11 Koo — K7, (10)

Substitutingk(z,, ;) for K;;, we get the desired inequality. |

2.2.1 Construction of the Reproducing Kernel Hilbert Space
We now define a map froi into the space of functions mappifiginto R, denoted a&™, via

®: X — R wherez — k(-, z). (11)

Here,®(x) = k(-, z) denotes the function that assigns the val(e, z) toz’ € X.
We next construct a dot product space containing the images of the inputs@nderthis end, we
first turn it into a vector space by forming linear combinations

f) = Zaik(»m (12)

Here,n € N, a; € Randz; € X are arbitrary.
Next, we define a dot product betwegrand another functiop(-) = >-7_, 8;k(-, «;) (with n’ € N,
B; € Randz; € X) as
(f9) =D aifsk(wi,af). (13)
i=1 j=1
To see that this is well-defined although it contains the expansion coefficients and points, note that
(f,g9) = 2?:1 B; f(z}). The latter, however, does not depend on the particular expansifn $imi-

larly, for g, note that(f,g) = Y1 ; a;g(z;). This also shows that, -) is bilinear. It is symmetric, as
(f,g9) = (g, f). Moreover, it is positive definite, since positive definitenes afplies that for any

function f, written as (12), we have

(1) =D oajh(ai,z5) > 0. (14)
i,j=1
Next, note that given functiong, . . ., f,, and coefficients, ..., v, € R, we have
P P D
Z Yivj (fis f5) = <Z'Yifi»27jfj> > 0. (15)
,j=1 i=1 j=1
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Here, the equality follows from the bi-linearity ¢f, -), and the right hand inequality from (14).
By (15), (-, -) is a positive definite kernel, defined on our vector space of functions. For the last step in
proving that it even is a dot product, we note that by (13), for all functions (12),

(k(-,z), f) = f(x), and in particulakk (-, z), k(-,2")) = k(z,2’). (16)

By virtue of these propertieg,is called areproducing kerneJAronszajn, 1950].
Due to (16) and (9), we have

[f(@)* = [(k(,2), O < k(z,2) - (£, ). (17)

By this inequality,( f, f) = 0 implies f = 0, which is the last property that was left to prove in order to
establish that., .) is a dot product.

Skipping some details, we add that one can complete the space of functions (12) in the norm corre-
sponding to the dot product, and thus gets a Hilbert sfécealled areproducing kernel Hilbert space
(RKHS)

One can define an RKHS as a Hilbert spé€ef functions on a seX with the property that for all
z € X and f € X, the point evaluationg — f(x) are continuous linear functionals (in particular, all
point valuesf (x) are well defined, which already distinguishes RKHS'’s from magnyHilbert spaces).

From the point evaluation functional, one can then construct the reproducing kernel using the Riesz
representation theorem. The Moore-Aronszajn-Theorem [Aronszajn, 1950] states that for every positive
definite kernel o x X, there exists a unique RKHS and vice versa.

There is an analogue of the kernel trick for distances rather than dot products, i.e., dissimilarities rather
than similarities. This leads to the larger classonditionally positive definite kernel§hose kernels
are defined just like positive definite ones, with the one difference being that their Gram matrices need to
satisfy (8) only subject to

i: C; = 0. (18)
i=1

Interestingly, it turns out that many kernel algorithms, including SVMs and kernel PCA (see Section 3),
can be applied also with this larger class of kernels, due to their being translation invariant in feature
space [Scblkopf and Smola, 2002, Hein et al., 2005].

We conclude this section with a note on terminology. In the early years of kernel machine learning
research, it was not the notion of positive definite kernels that was being used. Instead, researchers
considered kernels satisfying the conditions of Mercer’s theorem [Mercer, 1909], see e.g. Vapnik [1998]
and Cristianini and Shawe-Taylor [2000]. However, whilst all such kernels do satisfy (3), the converse is
not true. Since (3) is what we are interested in, positive definite kernels are thus the right class of kernels
to consider.

2.2.2 Properties of Positive Definite Kernels
We begin with some closure properties of the set of positive definite kernels.

Proposition 5 Below,k1, ko, . .. are arbitrary positive definite kernels ot x X, whereX is a nonempty
set.

(i) The set of positive definite kernels is a closed convex cone, i.e.a@)df, > 0, thena ky + azks is
positive definite; and (b) I(x, 2') := lim,,— ky(z, 2") exists for allz, 2’, thenk is positive definite.
(ii) The pointwise produck, k- is positive definite.

(i) Assume that for = 1, 2, k; is a positive definite kernel dk; x X;, whereX; is a nonempty set. Then
the tensor product; ®k- and the direct surh; &k, are positive definite kernels @by x Xs) x (Xq x X3).



The proofs can be found in Berg et al. [1984]. We only give a short proof of (ii), a result due to Schur
(see e.g., Berg and Forst [1975]). Denote KyL the positive definite Gram matrices bf, ko with
respect to some data set, ..., z,. Being positive definite, we can exprebsasSS ' in terms of an
n x n matrix.s (e.g., the positive definite square rootlgf We thus have

Lij =Y SimSjm, (19)
m=1
and therefore, for any,,...,c, € R,
n n n n n
Y ciciKiLiy =) ciciKij Y SinSim = Y Y (€iSim)(¢;Sjm)Kij >0, (20)
ij=1 ij=1 m=1 m=11i,j=1

where the inequality follows from (8).

It is reassuring that sums and products of positive definite kernels are positive definite. We will now
explain that, loosely speaking, there are no other operations that preserve positive definiteness. To this
end, letC denote the set of all functions: R — R that map positive definite kernels to (conditionally)
positive definite kernels (readers who are not interested in the case of conditionally positive definite
kernels may ignore the term in parentheses). We define

C = {v¢ | k is a positive definite kernel- ¥ (k) is a (conditionally) positive definite kernjel
Moreover, define

C' = {¢ | for any Hilbert spacé&, ¢ ((z,2")5) is (conditionally) positive definit¢
and

C" = {¢|foralln € N: K is a positive definite: x n matrix = v(K) is (conditionally) positive definité,

wherey (K) is then x n matrix with elements)(K;;).

Proposition6 C=C'=C"

Proof Letvy e C. For any Hilbert spacé, (z, ) is positive definite, thus((z, 2’) ;) is (condition-
ally) positive definite. Hence € C".

Next, assume) € C’. Consider, fom € N, an arbitrary positive definite x n-matrix K. We can
expressk as the Gram matrix of somey,...,z, € R", i.e.,, K;; = (2;,7;)p.. Sincey € C’, we
know thaty((z, z')g. ) is a (conditionally) positive definite kernel, hence in particular the mat(ik’)
is (conditionally) positive definite, thug € C”.

Finally, assume) € C”. Letk be a positive definite kernel, € N, ¢1,...,¢c, € R, andzy,...,z, €
X. Then
> cicit(k(ai ay)) = Y cicy($(K))i; = 0 (21)
17 17
(for 3=, ¢; = 0), where the inequality follows fromp € C”’. Thereforeg (k) is (conditionally) positive
definite, and hence € C. [ ]

The following proposition follows from a result of FitzGerald et al. [1995] for (conditionally) positive
definite matrices; by Proposition 6, it also applies for (conditionally) positive definite kernels, and for
functions of dot products. We state the latter case.



Proposition 7 Lety : R — R. Theny((z, 2")) is positive definite for any Hilbert spaceif and only
if ¢ is real entire of the form

w(t) =) ant" (22)
n=0

with a,, > 0forn > 0.
Moreover((z, 2') ;) is conditionally positive definite for any Hilbert spagef and only ify is real
entire of the form (22) witl,,, > 0 for n > 1.

There are further properties bfthat can be read off the coefficients.

e Steinwart [2002a] showed that if adl, are strictly positive, then the kernel of Proposition 7 is
universalon every compact subsét of R in the sense that its RKHS is dense in the space of
continuous functions of' in the ||.|| . norm. For support vector machines using universal kernels,
he then shows (universal) consistency [Steinwart, 2002b]. Examples of universal kernels are (23)
and (24) below.

e In Lemma 13, we will show that the, term does not affect an SVM. Hence we infer that it is
actually sufficient for consistency to hawg > 0 for n > 1.

o Let I .nandl,y denote the sets of even and odd incidlesth the property that; > 0, respectively.
Pinkus [2004] showed that for ardy, the kernel of Proposition 7 is strictly positive definite if and
only if ag > 0 and neithele,e,NOr Io4qis finite 2 Moreover, he states that the necessary and sufficient

ey . . . e 1 1 .
conditions for universality of the kernel are that in addition bpth., 3 and}_,., ; diverge.

While the proofs of the above statements are fairly involved, one can make certain aspects plau-

sible using simple arguments. For instance [Pinkus, 2004], suppdsenot strictly positive def-
inite. Then we know that for some # 0 we have}_,, c;cjk(z;,z;) = 0. This means that

(S cik(wi, ), 2 esk(z,)) = 0, implying that 3, cik(ai, ) = 0. For anyf = ¥, ask(zj,-),

this implies that) _, ¢; f(z;) = <Zi cik(zi, ), >, ajk(z;, -)> = 0. This equality thus holds for any
function in the RKHS. Therefore, the RKHS cannot lie dense in the space of continuous functins on
andk is thus not universal.

We thus know that it is universal, it is necessarily strictly positive definite. The latter, in turn, implies
that its RKHSXH is infinite dimensional, since otherwise the maximal rank of the Gram matrwath
respect to a data set i would equal its dimensionality. If we assume tHais finite dimensional, then
infinite dimensionality ofH implies that infinitely many of the; in (22) must be strictly positive. If only
finitely many of thea; in (22) were positive, we could construct the feature sgkcef ¢ ({x,z’)) by
taking finitely many tensor products and (scaled) direct sums of copigsasfd( would be finite3 We
conclude the section with an example of a kernel which is positive definite by Proposition 7. To this end,
let X be a dot product space. The power series expansigiiof = e* then tells us that

(o'}
k(z,2") = e o2 (23)

20ne might be tempted to think that given some strictly positive definite kémeth feature mapb and feature
space}(, we could setf to equald and considet)((®(z), ®(z)),). In this case, it would seem that choosing
a1 = 1 anda, = 0 for n # 1 should give us a strictly positive definite kernel which violates Pinkus’ conditions.
However, the latter kernel is only strictly positive definite®(i(), which is a weaker statement than it being strictly
positive definite on all of{.

3Recall that the dot product 6f ® 7 is the square of the original dot product, and the ong af 3, whereJ”’
is another dot product space, is the sum of the original dot products.



is positive definite [Haussler, 1999]. If we further multighywith the positive definite kernel(x) f ('),
ll=1?

| . . e .
wheref(z) = e~ 2-Z ando > 0, this leads to the positive definiteness of the Gaussian kernel

!
_llz—a’)?

K(a,a') = k(z,o) f(2) f(a') = e 5on (24)

2.2.3 Properties of Positive Definite Functions
We now letX = R and consider positive definite kernels of the form

k(z,2") = h(z —2'), (25)

in which caseh is called apositive definite functianThe following characterization is due to Bochner
[1933], see also Rudin [1962]. We state it in the form given by Wendland [2005].

Theorem 8 A continuous functioh onR? is positive definite if and only if there exists a finite nonnega-
tive Borel measurg on R? such that

h(z) = /Rd e @9 dp(w). (26)

Whilst normally formulated for complex valued functions, the theorem also holds true for real functions.
Note, however, that if we start with an arbitrary nonnegative Borel measure, its Fourier transform may
not be real. Real valued positive definite functions are distinguished by the fact that the corresponding
measureg are symmetric.

We may normalizé: such thath(0) = 1 (hence by (9)i(z)| < 1), in which caseu is a probabil-
ity measure and is its characteristic function. For instance ifis a normal distribution of the form

o2 |w|? (B
2

(27 /0?)~%2e="5 — dw, then the corresponding positive definite function is the Gaussian~ , cf.
(24).

Bochner’s theorem allows us to interpret the similarity meas@ea’) = h(x — ') in the frequency
domain. The choice of the measureletermines which frequency components occur in the kernel. Since
the solutions of kernel algorithms will turn out to be finite kernel expansions, the measwitethus
determine which frequencies occur in the estimates, i.e., it will determine their regularization properties
— more on that in Section 2.3.3 below.

A proof of the theorem can be found for instance in Rudin [1962]. One part of the theorem is easy to
prove: if h takes the form (26), then

bt — ) =S wa, [ eiwmme) g :/ semilmiw)
izjaa] (x; — ;) szaa]/Rde w(w) y ;ae

Bochner’s theorem generalizes earlier work of Mathias, and has itself been generalized in various ways,
e.g. by Schoenberg [1938]. An important generalization considers Abelian semigroups (e.g., Berg et al.
[1984]). In that case, the theorem provides an integral representation of positive definite functions in
terms of the semigroup’s semicharacters. Further generalizations were given by Krein, for the cases of
positive definite kernels and functions with a limited number of negative squares (see Stewart [1976] for
further details and references).

As above, there are conditions that ensure that the positive definiteness becomes strict.

2
du(w) > 0. (27)

Proposition 9 [Wendland, 2005] A positive definite function is strictly positive definite if the carrier of
the measure in its representation (26) contains an open subset.



This implies that the Gaussian kernel is strictly positive definite.

An important special case of positive definite functions, which includes the Gaussiaadldasis
functions These are functions that can be writterhés) = ¢(J|z||2) for some functiory : [0, co[— R.
They have the property of being invariant under the Euclidean group. If we would like to have the
additional property of compact support, which is computationally attractive in a number of large scale
applications, the following result becomes relevant.

Proposition 10 [Wendland, 2005] Assume that: [0, oco[— R is continuous and compactly supported.
Thenh(z) = g(||z||2) cannot be positive definite on every.

2.2.4 Examples of Kernels

We have already seen several instances of positive definite kernels, and now intend to complete our
selection with a few more examples. In particular, we discuss polynomial kernels, convolution kernels,
ANOVA expansions, and kernels on documents.

Polynomial Kernels From Proposition 5 it is clear that homogeneous polynomial kerr@lsz’) =
(x,2")? are positive definite fop € N andz, 2’ € R?. By direct calculation we can derive the corre-
sponding feature map [Poggio, 1975]

d p

(o) = | Dolallely | = D laljy o lal, [ (2]}, = (Cp(x), Cp(a)),  (28)

j=1 jE[d]P

whereC, mapsz € R¢ to the vectorC, (z) whose entries are all possilleth degree ordered products
of the entries of: (note thafd) is used as a shorthand f6t, . . ., d}). The polynomial kernel of degrge
thus computes a dot product in the space spanned by all monomials of gegrbe input coordinates.
Other useful kernels include the inhomogeneous polynomial,

k(z,2") = ({(x,2") 4+ ¢)” wherep € N andc > 0, (29)

which computes all monomials up to degyee

Spline Kernels It is possible to obtain spline functions as a result of kernel expansions [Smola, 1996,
Vapnik et al., 1997] simply by noting that convolution of an even number of indicator functions yields a
positive kernel function. Denote b the indicator (or characteristic) function on the &tand denote

by ® the convolution operatior,f ® g)(z) := [;. f(z')g(z’ — x)dz’. Then the B-spline kernels are
given by

k(z,z") = Bapi1(z — 2') wherep € Nwith B, := B; ® By. (30)

Here B, is the characteristic function on the unit att R. From the definition of (30) it is obvious that
for oddm we may writeB,,, as inner product between functiof, .. Moreover, note that for evemn,
B,, is not a kernel.

Convolutions and Structures Let us now move to kernels defined on structured objects [Haussler,
1999, Watkins, 2000]. Suppose the object X is composed of,, € X,,, wherep € [P] (note that the
setsX,, need not be equal). For instance, consider the siriagAT'G, andP = 2. It is composed of the
partsx; = AT andz, = G, or alternatively, oft; = A andz, = T'G. Mathematically speaking, the set

of “allowed” decompositions can be thought of agkation R(x1,...,2p,x), to be read as#y,...,xzp
constitute the composite object

“Note that inR one typically used[fl 1]-
272



Haussler [1999] investigated how to define a kernel between composite objects by building on similar-
ity measures that assess their respegibsts in other words, kernels, defined ori(, x X,,. Define the
R-convolutionof kq,...,kp as

P
[kl *"'*kP] (wvx,) = Z Hkp(jpﬂjlp)v (31)

z€R(z),z’€R(z") p=1

where the sum runs over all possible wa(s) andR(z’) in which we can decomposeinto zy, ..., Zp
andz’ analogously. If there is only a finite number of ways, the relati@nis called finite. In this case,
it can be shown that thB-convolution is a valid kernel [Haussler, 1999].

ANOVA Kernels  Specific examples of convolution kernels are Gaussians and ANOVA kernels [Wahba,
1990, Vapnik, 1998]. To construct an ANOVA kernel, we consiifer SV for some sefS, and kernels
k@ onS x S,wherei=1,...,N.ForP =1,...,N,theANOVA kernel of ordeP is defined as

P

kp(z,2') :== Z H k(ip)(aciw:r;p). (32)

1<ip<-<ip<N p=1

Note that if P = N, the sum consists only of the term for whi@h, . ..,ip) = (1,..., N), andk equals
the tensor produdt!) @ --- @ k(N). At the other extreme, iP = 1, then the products collapse to one
factor each, and equals the direct sui)) @ - -- @ kN). For intermediate values d?, we get kernels
that lie in between tensor products and direct sums.

ANOVA kernels typically use some moderate valueihfwhich specifies the order of the interactions
between attributes;, that we are interested in. The sum then runs over the numerous terms that take
into account interactions of ordét; fortunately, the computational cost can be reduced(tBd) cost by
utilizing recurrent procedures for the kernel evaluation. ANOVA kernels have been shown to work rather
well in multi-dimensional SV regression problems [Stitson et al., 1999].

Brownian Bridge and Related Kernels The Brownian bridge kernehin(z, z') defined orR likewise
is a positive kernel. Note that one-dimensional linear spline kernels with an infinite number of nodes
[Vapnik et al., 1997] forr, 2’ € Ry are given by

(2, a') = min(z,:p')3 n IHiIl(LC,$'2)2|:L' — ' 1w (33)

These kernels can be used as basis functiGfsin ANOVA expansions. Note that it is advisable to use
a k(™ which never or rarely takes the value zero, since a single zero term would eliminate the product in
(32).

Bag of Words One way in which SVMs have been used for text categorization [Joachims, 2002] is
the bag-of-wordsrepresentation. This maps a given text to a sparse vector, where each component cor-
responds to a word, and a component is set to one (or some other number) whenever the related word
occurs in the text. Using an efficient sparse representation, the dot product between two such vectors
can be computed quickly. Furthermore, this dot product is by construction a valid kernel, referred to as

a sparse vector kernelOne of its shortcomings, however, is that it does not take into account the word
ordering of a document. Other sparse vector kernels are also conceivable, such as one that maps a text to
the set of pairs of words that are in the same sentence [Joachims, 1998, Watkins, 2000], or those which
look only at pairs of words within a certain vicinity with respect to each other [Sim, 2001].

SWe use the convention that an empty sum equals zero, hence if either’ cannot be decomposed, then
(k1% xkp)(z,2") = 0.
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n-grams and Suffix Trees A more sophisticated way of dealing with string data was proposed
[Watkins, 2000, Haussler, 1999]. The basic idea is as described above for general structured objects
(31): Compare the strings by means of the substrings they contain. The more substrings two strings have
in common, the more similar they are. The substrings need not always be contiguous; that said, the fur-
ther apart the first and last element of a substring are, the less weight should be given to the similarity.
Depending on the specific choice of a similarity measure it is possible to define more or less efficient
kernels which compute the dot product in the feature space spanradiddoypstrings of documents.

Consider a finite alphabéi, the set of all strings of length, X", and the set of all finite strings,
¥* 1= U2 X", The length of a string € ¥* is denoted bys|, and its elements by(1) ... s(|s|); the
concatenation of andt € X* is written st. Denote by

k((L’, :E/) = Z #(58, 5)#(I/7 S)Cs

a string kernel computed from exact matches. Hé(e, s) is the number of occurrences ofn z and
cs > 0.

Vishwanathan and Smola [2004] provide an algorithm using suffix trees, which allows one to compute
for arbitraryc, the value of the kernél(z, 2") in O(|z| + |2'|) time and memory. Moreover, alggz) =
(w, ®(x)) can be computed iD(|x|) time if preprocessing linear in the size of the support vectors is
carried out. These kernels are then applied to function prediction (according to the gene ontology) of
proteins using only their sequence information. Another prominent application of string kernels is in the
field of splice form prediction and gene findingRch et al. [2007].

For inexact matches of a limited degree, typically up te 3, and strings of bounded length a similar
data structure can be built by explicitly generating a dictionary of strings and their neighborhood in
terms of a Hamming distance [Leslie et al., 2002b,a]. These kernels are defined by replaciny
by a mismatch functios#(z, s, €) which reports the number of approximate occurrencesiofx. By
trading off computational complexity with storage (hence the restriction to small numbers of mismatches)
essentially linear-time algorithms can be designed. Whether a general purpose algorithm exists which
allows for efficient comparisons of strings with mismatches in linear time is still an open question. Tools
from approximate string matching [Navarro and Raffinot, 1999, Cole and Hariharan, 2000, Gusfield,
1997] promise to be of help in this context.

Mismatch Kernels In the general case it is only possible to find algorithms whose complexity is linear
in the lengths of the documents being compared, and the length of the substringg|ale.|z’|) or
worse. We now describe such a kernel with a specific choice of weights [Watkins, 2000, Cristianini and
Shawe-Taylor, 2000].

Let us now form subsequence®f strings. Given an index sequernice= (iy, ..., i) With 1 <i; <
e <y < ||, we defineu = s(i) 1= s(i1) ... s(i},)). We calll(i) := i}, — 41 + 1 the length of the
subsequence in Note that ifi is not contiguous, thel(i) > |u|.

The feature space built from strings of lengthis defined to be(,, := R*"), This notation means
that the space has one dimension (or coordinate) for each elemgft lafbelled by that element (equiv-
alently, we can think of it as the space of all real-valued function&bh We can thus describe the
feature map coordinate-wise for eaclke ¥" via

[@n(s)]u = > MO (34)

irs(i)=u

Here,0 < A < 1 is a decay parameter: The larger the length of the subsequercé¢h@ smaller the
respective contribution tf,, (s)],,. The sum runs over all subsequences wahich equak.
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For instance, consider a dimensioritf spanned (that is, labelled) by the strimgd . In this case, we
have[®3(Nasdaq)|asa = A?, While [®3(1ass das)]..a = 2A°.% The kernel induced by the map, takes

the form
kn(s,t) = Y [®n(s)]u => > AL NG, (35)

oA weS™ (i,§):s(i)=t(j)=u

To describe the actual computationff, define
=Y > Al =i=0142 forj — 1. n—1. (36)
€D (1,j):s(1)=t(j)=u

Usingz € X!, we then have the following recursions, which allow the computatiok, 6%, ¢) for all
n =1,2,... (note that the kernels are symmetric):

ki(s,t) = 1foralls,t
ki(s,t) = 0if min(]s|,|t]) <
ki(s,t) = 0if min(|s|, |t|)<z
Ki(sz,t) = Mei(s,t)+ Zk Lo, j—1IPAt=3+2 =1 n—1
ky(sz,t) = Z KL (s 1.5 —1])N2 (37)
jitj=x

The string kernek,, can be computed using dynamic programming, see Watkins [2000], Lodhi et al.
[2000], and Durbin et al. [1998].

The above kernels on string, suffix-tree, mismatch and tree kernels have been used in sequence analysis.
This includes applications in document analysis and categorization, spam filtering, function prediction in
proteins, annotations of dna sequences for the detection of introns and exons, named entity tagging of
documents, and the construction of parse trees.

Locality Improved Kernels It is possible to adjust kernels to the structure of spatial data. Recall the
Gaussian RBF and polynomial kernels. When applied to an image, it makes no difference whether one
uses ag the image or a version af where all locations of the pixels have been permuted. This indicates
that function space ol induced byk does not take advantage of tlegality properties of the data.

By taking advantage of the local structure, estimates can be improved. On biological sequences [Zien
et al., 2000] one may assign more weight to the entries of the sequence close to the location where
estimates should occur.

For images, local interactions between image patches need to be considered. One way is to use the
pyramidal kernel [Scliblkopf, 1997, DeCoste and Salkopf, 2002]. It takes inner products between
corresponding image patches, then raises the latter to some powand finally raises their sum to
another powep,. While the overall degree of this kernelzsps, the first factomp, only captures short
range interactions.

Tree Kernels We now discuss similarity measures on more structured objects. For trees Collins and
Duffy [2001] propose a decomposition method which maps a:trggo its set of subtrees. The kernel
between two trees, =’ is then computed by taking a weighted sum of all terms between both trees. In
particular, Collins and Duffy [2001] show a quadratic time algorithm, O|x| - |2'|) to compute this
expression, whergr| is the number of nodes of the tree. When restricting the sum to all proper rooted
subtrees it is possible to reduce the computational caS{fe| + |z’|) time by means of a tree to string
conversion [Vishwanathan and Smola, 2004].

8In the first string,asd is a contiguous substring. In the second string, it appears twice as a non-contiguous
substring of lengtly in lass das |, the two occurrences aleas s das andla ss das.
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Graph Kernels Graphs pose a twofold challenge: one may both design a kenvelrtices of them and

also a kernebetweerthem. In the former case, the graph itself becomes the object defining the metric
between the vertices. Seéf@ner [2003], Kashima et al. [2004], and Kashima et al. [2003] for details
on the latter. In the following we discuss kernelsgraphs.

Denote bylV € R™*" the adjacency matrix of a graph with;; > 0 if an edge betwee# j exists.
Moreover, assume for simplicity that the graph is undirected, tH&t is= W (see Zhou et al. [2005] for
extensions to directed graphs). Denotelby: D — W the graph Laplacian and bfy=1—D~: WD~
the normalized graph Laplacian. Helbeis a diagonal matrix withD,; = Zj W;; denoting the degree of
vertexi.

Fiedler [1973] showed that the second largest eigenvectaragproximately decomposes the graph
into two parts according to their sign. The other large eigenvectors partition the graph into correspond-
ingly smaller portions.L arises from the fact that for a functighdefined on the vertices of the graph
S (@) = F())> =2fTLf.

Finally, Smola and Kondor [2003] show that under mild conditions and up to rescaliisgthe only
quadratic permutation invariant form which can be obtained as a linear functiéh of

Hence it is reasonable to consider kernel matrikesbtained fromZ (and L). Smola and Kondor
[2003] suggest kernel& = r(L) or K = r(i), which have desirable smoothness properties. Here
r : [0,00) — [0, 00) is @ monotonically decreasing function. Popular choices include

(&) = exp(—A¢) diffusion kernel (38)
r(€) = (E+ N1 regularized graph Laplacian (39)
r(§) =(A=¢§P p-step random walk (40)

where) > 0 is chosen such as to reflect the amount of diffusion in (38), the degree of regularization in
(39), or the weighting of steps within a random walk (40) respectively. Eq. (38) was proposed by Kondor
and Lafferty [2002]. In Section 2.3.3 we will discuss the connection between regularization operators and
kernels inR™. Without going into details, the function¢) describes the smoothness properties on the
graph and’ plays the role of the Laplace operator.

Kernels on Sets and SubspacesWhenever each observation consists of setof instances we may
use a range of methods to capture the specific properties of these sets (for an overview, see Vishwanathan
et al. [2006]):

« take the average of the elements of the set in feature space, thét,is,— 1 > ¢(wi;) [Gartner
et al., 2002]. This yields good performance in the area of multi-instance learning.

e Jebara and Kondor [2003] extend the idea by dealing with distribugipig such thatp(x;) =
E [¢(x)] wherez ~ p;(z). They apply it to image classification with missing pixels.

e Alternatively, one can study angles enclosedshipspacespanned by the observations [Wolf and
Shashua, 2003, Martin, 2000, Cock and Moor, 2002]. In a nutshéll,if denote the orthogonal
matrices spanning the subspaces aindz’ respectively, thet(x, z') = det U " U".

¢ Vishwanathan et al. [2006] extend this to arbitrary compound matrices (i.e. matrices composed of
subdeterminants of matrices) and dynamical systems. Their result exploits the Binet Cauchy theo-
rem which states that compound matrices are a representation of the matrix grolp(A&) =
C,(A)C,(B). This leads to kernels of the fork{x, z’) = tr C,(AB). Note that forg = dimA we
recover the determinant kernel of Wolf and Shashua [2003].

Fisher Kernels Jaakkola and Haussler [1999] have designed kernels building on probability density
modelsp(z|0). Denote by

Ug(z) := —0p log p(z|0) (41)
[ :=E, [Uy(z)Uy (2)] (42)
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the Fisher scores and the Fisher information matrix respectively. Note that for maximum likelihood
estimatorsE,, [Uy(z)] = 0 and thereford is the covariance df/y(x). The Fisher kernel is defined as

k(x,z') == U, ()~ Uy(z") or k(z,2") := Uy (z)Ug(z") (43)

depending on whether whether we study the normalized or the unnormalized kernel respectively.

In addition to that, it has several attractive theoretical properties: Oliver et al. [2000] show that esti-
mation using the normalized Fisher kernel corresponds to estimation subject to a regularization on the
Lo(p(-|0)) norm.

Moreover, in the context of exponential families (see Section 5.1 for a more detailed discussion) where
p(z|0) = exp({¢(x),0) — g(0)) we have

k(z,2') = [p(x) — Opg(0)] [$(") — Dpg(0)] . (44)

for the unnormalized Fisher kernel. This means that up to centerigddy) the Fisher kernel is identi-

cal to the kernel arising from the inner product of the sufficient statistiz$. This is not a coincidence.

In fact, in our analysis of nonparametric exponential families we will encounter this fact several times
(cf. Section 5 for further details). Moreover, note that the centering is immaterial, as can be seen in
Lemma 13.

The above overview of kernel design is by no means complete. The reader is referred to books of
Cristianini and Shawe-Taylor [2000], Salkopf and Smola [2002], Joachims [2002], Herbrich [2002],
Schdlkopf et al. [2004], Shawe-Taylor and Cristianini [2004], Bakir et al. [2007] for further examples and
details.

2.3 Kernel Function Classes

2.3.1 The Representer Theorem

From kernels, we now move to functions that can be expressed in terms of kernel expansions. The
representer theorem [Kimeldorf and Wahba, 1971, Cox and O’Sullivan, 1990] shows that solutions of a
large class of optimization problems can be expressed as kernel expansions over the sample points. We
present a slightly more general version of the theorem with a simple proodl@gi et al., 2001]. As
above H is the RKHS associated to the kerrel

Theorem 11 (Representer Theorem)Denote by : [0,00) — R a strictly monotonic increasing func-
tion, by X a set, and by: : (X x R?)" — R U {oo} an arbitrary loss function. Then each minimizer
f € H of the regularized risk functional

c(@r,yn, f(@0)) s s (@nsyns f(2n)) + Q (113 (45)

admits a representation of the form

(@) = oik(wi, ). (46)
i=1
Proof We decompose any € X into a part contained in the span of the kernel functions
k(z1,-), -, k(x,,-), and one in the orthogonal complement;
f(x) = fi(z) + fL(z ZO@ zi,x) + fo (). (47)

Herea; € Randf, € H with (f1,k(z;,-))s = 0foralli € [n] := {1,...,n}. By (16) we may write
f(z;) (forall j € [n]) as

f(zi) = (f(), k(x),-)) Z@z xi, x;) + (fL(), k(zj,-)) Zakxz,x] (48)
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Second, for allf ,

2 2

+lIfl3 ) =@
I

QIf1130) = (49)

imk(z“) iazk($m)

Thus for any fixedv; € R the risk functional (45) is minimized fof, = 0. Since this also has to hold
for the solution, the theorem holds. |

H

Monotonicity of 2 does not prevent the regularized risk functional (45) from having multiple local
minima. To ensure a global minimum, we would need to require convexity. If we discard the strictness of
the monotonicity, then it no longer follows that each minimizer of the regularized risk admits an expansion
(46); it still follows, however, that there is always another solution that is as good, ardbésstdmit the
expansion.

The significance of the Representer Theorem is that although we might be trying to solve an optimiza-
tion problem in an infinite-dimensional spa%& containing linear combinations of kernels centered on
arbitrary points ofX, it states that the solution lies in the spamagparticular kernels — those centered
on the training points. We will encounter (46) again further below, where it is calle8upport Vector
expansion For suitable choices of loss functions, many of dheften equab.

2.3.2 Reduced Set Methods

Despite the finiteness of the representation in (46) it can often be the case that the number of terms in
the expansion is too large in practice. This can be problematic in practical applications, since the time
required to evaluate (46) is proportional to the number of terms. To deal with this issue, we thus need
to express or at least approximate (46) using a smaller number of terms. Exact expressions in a reduced
number of basis points are often not possible; e.g., if the kernel is strictly positive definite and the data
pointszy, ..., xz, are distinct, then no exact reduction is possible. For the purpose of approximation, we
need to decide on a discrepancy measure that we want to minimize. The most natural such measure is
the RKHS norm. From a practical point of view, this norm has the advantage that it can be computed
using evaluations of the kernel function which opens the possibility for relatively efficient approximation
algorithms. Clearly, if we were given a set of points. . ., z,, such that the function (cf. (46))

f= Zaik(%, ) (50)
=1
can be expressed with small RKHS-error in the subspace spanrgdy), . . ., k(zn,, ), then we can

compute ann-term approximation of by projection onto that subspace.
The problem thus reduces to the choice of the expansion peints., z,,. In the literature, two
classes of methods have been pursued. In the first, it is attempted to choose the points as a subset of some
larger setrq, ..., x,, which is usually the training set [Salkopf, 1997, Friel3 and Harrison, 1998]. In
the second, we compute the difference in the RKHS between (50) anebiheed set expansigBurges,
1996]

9=">_ Bpk(zp,"), (51)
p=1

leading to

If =gl = > cvajklwsay) + Y Bpbek(zp,2g) =2 > cillpk(ai, 2p). (52)

3,j=1 p,q=1 =1 p=1

15



To obtain thez, ..., z,, andgy, ..., 5,,, we can minimize this objective function, which for most kernels
will be a nonconvex optimization problem. Specialized methods for specific kernels exist, as well as
iterative methods taking into account the fact that givenzthe. ., z,,, the coefficients3,, ..., 5,, can
be computed in closed form. See Btidopf and Smola [2002] for further details.

Once we have constructed or selected a set of expansion points, we are working in a finite dimensional
subspace di spanned by these points.

It is known that each closed subspace of an RKHS is itself an RKHS. Denote its kerhehby the
projectionP onto the subspace is given by (e.g., Meschkowski [1962])

(Pf)() = (f,1(2)). (53)

If the subspace is spanned by a finite set of linearly independent kérfiels), ..., k(-, z,), the
kernel of the subspace takes the form

Em(z,2') = (k(z,21), ..., k(z, 20)) K~ (k(2, 21), ..., k(2 zm))T , (54)
where K is the Gram matrix of with respect toz, ..., z,. This can be seen by noting that (i) the
km (-, x) span anm-dimensional subspace, and (i) we havg(z;, z;) = k(z,2;) fori,j =1,...,m.

The kernel of the subspace’s orthogonal complement, on the other hand, 4s, .
The projection onto the:-dimensional subspace can be written

P = Z (Kﬁl)ij k('vzi)k('vzj)—ra (55)
ij=1

wherek(-, z;) " denotes the linear form mappiig-, =) to k(z;, ) for x € X.
If we prefer to work with coordinates and the Euclidean dot product, we can ugerthel PCA map
[Scholkopf and Smola, 2002]

&, : X —-R"™, z— K12 (k(x,21), ..., k(z, zm))T , (56)

which directly projects into an orthonormal basis of the subspace.
A number of articles exist discussing how to best choose the expansion pofotsthe purpose of
processing a given dataset, e.g., Smola an@Ropf [2000], Williams and Seeger [2000].

2.3.3 Regularization Properties

The regularizet| f||3; used in Theorem 11, which is what distinguishes SVMs from many other regu-
larized function estimators (e.g., based on coefficient basedgularizers, such as the Lasso [Tibshirani,
1996] or linear programming machines [$dkopf and Smola, 2002]), stems from the dot prodifctf),.
in the RKHSXH associated with a positive definite kernel. The nature and implications of this regularizer,
however, are not obvious and we shall now provide an analysis in the Fourier domain. It turns out that
if the kernel is translation invariant, then its Fourier transform allows us to characterize how the different
frequency components g¢f contribute to the value of f||%.. Our exposition will be informal (see also
Poggio and Girosi [1990], Girosi et al. [1993], Smola et al. [1998]), and we will implicitly assume that
all integrals are oveR? and exist, and that the operators are well defined.

We will rewrite the RKHS dot product as

<fa g>k = <Tf7 Tg> = <T2f,g>7 (57)

’In caseK does not have full rank, projections onto the Sp&f, z1), ..., k(-, z)} are achieved by using the
pseudoinverse oK instead.
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whereT is a positive (and thus symmetric) operator mapgihgnto a function space endowed with the

usual dot product
9 = [ £@5@) da. (58)

Rather than (57), we consider the equivalent condition (cf. Section 2.2.1)
(k(z, ), k(2 ), = (Yk(z, ), Yk(z',)) = (Y?k(x, ), k(z',")) . (59)
If k(z,-) is aGreen functiorof Y2, we have
(Y2k(z,), k(2 ")) = (62, k(2', ) = k(z,2), (60)

which by the reproducing property (16) amounts to the desired equality (59).

We now consider the particular case where the kernel can be wiitter’) = h(xz — z’) with a
continuous strictly positive definite function € L, (R?) (cf. Section 2.2.3). A variation of Bochner’s
theorem, stated by Wendland [2005], then tells us that the measure corresporidiasta nonvanishing
densityv with respect to the Lebesgue measure, i.e., thagn be written as

k(z,2") = /e_i<x_x,’w>v(w)dw = /e_i<x’“>e—’7<m"“>v(w)dw. (61)
We would like to rewrite this agYk(z,-), Tk(z’,-)) for some linear operatdf. It turns out that a

multiplication operator in the Fourier domain will do the job. To this end, recalldtsmensional
Fourier transform, given by

Flf(w ’%/f eite) (62)
with the inversef’ [ f](z )% / Fw)el™<) du. (63)

Next, compute the Fourier transformiofas

_4
2

Flk(z,))w) = / / “i(e)) b Dt ) (64)
= (2 >% (w)e~ o), (65)

Hence we can rewrite (61) as
k(aax’) _ (271_)—(1/ F[k($7)](t;}))F[k(fE’, )](w) dw. (66)

If our regularization operator maps

Y: fs (20) 20 2 F[f], (67)

we thus have

k(x,2') = /(Tk(l‘, NW)(Tk(', ) (w)dw, (68)

8For conditionally positive definite kernels, a similar correspondence can be established, with a regularization
operator whose null space is spanned by a set of functions which are not regularized (in the case (18), which is
sometimes calledonditionally positive definite of order, these are the constants).
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i.e., our desired identity (59) holds true.
As required in (57), we can thus interpret the dot prodiyfty), in the RKHS as a dot product
J (X f)(w)(Yg)(w)dw. This allows us to understand regularization propertigsiofterms of its (scaled)
Fourier transformv(w). Smallvalues ofv(w) amplify the corresponding frequencies in (67). Penalizing
(f, ), thus amounts to atrongattenuation of the corresponding frequencies. Hence small values of
v(w) for large||w|| are desirable, since high frequency component8[gf correspond to rapid changes
in f. It follows thatv(w) describes the filter properties of the corresponding regularization op&tator
view of our comments following Theorem 8, we can translate this insight into probabilistic terms: if the
v(w)dw

probability measurw describes the desired filter properties, then the natural translation invariant
kernel to use is the characteristic function of the measure.

2.3.4 Remarks and Notes

The notion of kernels as dot products in Hilbert spaces was brought to the field of machine learning by
Aizerman et al. [1964], Boser et al. [1992], Vapnik [1998], Bkklopf et al. [1998]. Aizerman et al. [1964]
used kernels as a tool in a convergence proof, allowing them to apply the Perceptron convergence theorem
to their class of potential function algorithms. To the best of our knowledge, Boser et al. [1992] were the
first to use kernels to construct a nonlinear estimation algorithm, the hard margin predecessor of the
Support Vector Machine, from its linear counterpart, gemeralized portraifVapnik and Lerner, 1963,

Vapnik, 1982]. Whilst all these uses were limited to kernels defined on vectorial datdk&gh[1997]
observed that this restriction is unnecessary, and nontrivial kernels on other data types were proposed by
Haussler [1999], Watkins [2000]. Salkopf et al. [1998] applied the kernel trick to generalize principal
component analysis and pointed out the (in retrospect obvious) fact that any algorithm which only uses
the data via dot products can be generalized using kernels.

In addition to the above uses of positive definite kernels in machine learning, there has been a parallel,
and partly earlier development in the field of statistics, where such kernels have been used for instance for
time series analysis [Parzen, 1970] as well as regression estimation and the solution of inverse problems
[Wahba, 1990].

In probability theory, positive definite kernels have also been studied in depth since they arise as co-
variance kernels of stochastic processes, see e.gvfl,d978]. This connection is heavily being used in
a subset of the machine learning community interested in prediction with Gaussian Processes [Rasmussen
and Williams, 2006].

In functional analysis, the problem of Hilbert space representations of kernels has been studied in great
detail; a good reference is Berg et al. [1984]; indeed, a large part of the material in the present section
is based on that work. Interestingly, it seems that for a fairly long time, there have been two separate
strands of development [Stewart, 1976]. One of them was the study of positive definite functions, which
started later but seems to have been unaware of the fact that it considered a special case of positive
definite kernels. The latter was initiated by Hilbert [1904], Mercer [1909], and pursued for instance by
Schoenberg [1938]. Hilbert calls a kerrietliefinitif

/ / (x,2") f(x) f(2")dzdx' > 0 (69)

for all nonzero continuous functions, and shows that all eigenvalues of the corresponding integral
operatorf f b k(z,-) f(z)dz are then positive. Ik satisfies the condition (69) subject to the constraint
thatf f(@)g(z)dx = O for some fixed functiory, Hilbert calls itrelativ definit For that case, he shows
thatk has at most one negative eigenvalue. Note thédtif chosen to be constant, then this notion is
closely related to the one of conditionally positive definite kernels, cf. (18). For further historical details
see the review of Stewart [1976] or Berg et al. [1984].
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3 Convex Programming Methods for Estimation

As we saw, kernels can be used both for the purpose of describing nonlinear functions subject to smooth-
ness constraints and for the purpose of computing inner products in some feature space efficiently. In this
section we focus on the latter and how it allows us to design methods of estimation based on the geometry
of the problems at hand.

Unless stated otherwidB[-] denotes the expectation with respect to all random variables of the ar-
gument. Subscripts, such &s¢[-], indicate that the expectation is taken ovér We will omit them
wherever obvious. Finally we will refer tBe,,,,[-] as the empirical average with respect tonrasample.

Given a samplé8 := {(z1,vy1),-.-, (zn,¥n)} € X x Y we now aim at finding an affine function

f(x) = (w,¢(x)) + b or in some cases a functiof(z,y) = (¢(z,y), w) such that the empirical risk

on 8 is minimized. In the binary classification case this means that we want to maximize the agreement
betweersgn f(x) andy.

e Minimization of the empirical risk with respect tav, b) is NP-hard [Minsky and Papert, 1969]. In
fact, Ben-David et al. [2003] show that even approximately minimizing the empirical risk is NP-
hard, not only for linear function classes but also for spheres and other simple geometrical objects.
This means that even if the statistical challenges could be solved, we still would be confronted with
a formidable algorithmic problem.

e The indicator functioqy f(x) < 0} is discontinuous and even small changeg may lead to large
changes in both empirical and expected risk. Properties of such functions can be captured by the VC-
dimension [Vapnik and Chervonenkis, 1971], that is, the maximum number of observations which
can be labeled in an arbitrary fashion by functions of the class. Necessary and sufficient conditions
for estimation can be stated in these terms [Vapnik and Chervonenkis, 1991]. However, much tighter
bounds can be obtained by also using the scale of the class [Alon et al., 1993, Bartlett et al., 1996,
Williamson et al., 2001]. In fact, there exist function classes parameterized by a single scalar which
have infinite VC-dimension [Vapnik, 1995].

Given the difficulty arising from minimizing the empirical risk we now discuss algorithms which mini-
mize an upper bound on the empirical risk, while providing good computational properties and consis-
tency of the estimators. The statistical analysis is relegated to Section 4.

3.1 Support Vector Classification

Assume thas is linearly separable, i.e. there exists a linear funcifém) such thasgnyf(z) = 1 on
8. In this case, the task of finding a large margin separating hyperplane can be viewed as one of solving
[Vapnik and Lerner, 1963]

1
minirilize 3 w||® s.t. yi ((w,z) +b) > 1. (70)
w

s

Note that||w| ™" f(x;) is the distance of the point; to the hyperplanél (w, b) := {z| (w,z) + b = 0}.

The conditiony; f(x;) > 1 implies that the margin of separation is at lezagts| ~'. The bound becomes

exact if equality is attained for somg = 1 andy; = —1. Consequently minimizingjw|| subject to

the constraints maximizes the margin of separation. Eq. (70) is a quadratic program which can be solved
efficiently [Luenberger, 1984, Fletcher, 1989, Boyd and Vandenberghe, 2004].

Mangasarian [1965] devised a similar optimization scheme uUginlg instead of|w||,, in the objective
function of (70). The result is dnear program. In general, one can show [Smola et al., 2000] that
minimizing the/, norm ofw leads to the maximizing of the margin of separation inédheorm where
%, + 1 = 1. The/; norm leads to sparse approximation schemes (see also Chen et al. [1999]), whereas
the /> norm can be extended to Hilbert spaces and kernels.

19



To deal with nonseparable problems, i.e. cases when (70) is infeasible, we need to relax the constraints
of the optimization problem. Bennett and Mangasarian [1992] and Cortes and Vapnik [1995] impose a
linear penalty on the violation of the large-margin constraints to obtain:

1 n
minimize = ||lw|]® + CY & sty ((w,z;)+b) >1-&andg; >0, Vi€ [n]. (71)
wbg 2 p
Eq. (71) is a quadratic program which is always feasible (e,§.= 0 and§; = 1 satisfy the constraints).
C > 0is a regularization constant trading off the violation of the constraints vs. maximizing the overall
margin.
Whenever the dimensionality &f exceeds:, direct optimization of (71) is computationally inefficient.
This is particularly true if we map frorX into an RKHS. To address these problems one may solve the
problem in dual space as follows. The Lagrange function of (71) is given by

L(w,b, &, a,m) :% [w* +C> &+ ai(1=&—yi (w,z) +0) =Y m& (72
=1 =1 =1

wherea;, n; > 0 for all i € [n]. To compute the dual of we need to identify the first order conditions
in w,b. They are given by

Ol =w =Y oy =0anddL = — > a;y; =0andde L =C—a;+n,=0. (73)
i=1 i=1

This translates intav = Y7 | a;y;24, the linear constrainy_"_, a;y; = 0, and the box-constraint
a; € [0, C] arising fromn; > 0. Substituting (73) intdC yields the Wolfe [1961] dual

1
minimize iaTQa —a'l st a'y=0andw; €[0,C). Vi € [n]. (74)
[0

@ € R™ " is the matrix of inner product®;; := y;y; (x;, z;). Clearly this can be extended to feature
maps and kernels easily vig;; := y;y; (®(x;), ®(x;)) = yiy,;k(z;, z;). Note thatw lies in the span

of thexz;. This is an instance of the Representer Theorem (Theorem 11). The KKT conditions [Karush,
1939, Kuhn and Tucker, 1951, Boser et al., 1992, Cortes and Vapnik, 1995] require that at optimality
a;(yi f(z;)—1) = 0. This means that only those may appear in the expansion (73) for whighf (x;) <

1, as otherwisey; = 0. Thex; with «; > 0 are commonly referred to as support vectors.

Note that) """ , & is an upper bound on the empirical risk, @g (z;) < 0 implies&; > 1 (see also
Lemma 12). The number of misclassified pointstself depends on the configuration of the data and the
value of C'. The result of Ben-David et al. [2003] suggests that finding even an approximate minimum
classification error solution is difficult. That said, it is possible to modify (71) such that a desired target
number of observations violatesf(z;) > p for somep € R by making the threshold itself a variable
of the optimization problem [Séikopf et al., 2000]. This leads to the following optimization problem
(v-SV classification):

1 = .
minigréize 5 lwl® + " & — nvp subject toy; ((w, z;) +b) > p — & andg; > 0. (75)
wo i=1

The dual of (75) is essentially identical to (74) with the exception of an additional constraint:
1 .
minimize iaTQa subject ton "y = 0 anda" 1 = nr anda; € [0, 1]. (76)

One can show that for every there exists @& such that the solution of (76) is a multiple of the solution
of (74). Scldlkopf et al. [2000] prove that solving (76) for whigh> 0 satisfies:
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1. vis an upper bound on the fraction of margin errors.
2. vis alower bound on the fraction of SVs.

Moreover under mild conditions, with probabiliy asymptotically,y equals both the fraction of SVs
and the fraction of errors.

This statement implies that whenever the data are sufficiently well separable (that i8), v-SV
Classification finds a solution with a fraction of at mestnargin errors. Also note that for = 1, all
a; = 1, thatis,f becomes an affine copy of the Parzen windows classifier (5).

3.2 Estimating the Support of a Density

We now extend the notion of linear separation to that of estimating the support of a densiiikffpch
et al.,, 2001, Tax and Duin, 1999]. Denote Ky= {z1,...,z,} C X the sample drawn froR(z). Let
C be a class of measurable subset&(and let\ be a real-valued function defined €n The quantile
function[Einmal and Mason, 1992] with respect(B, A, C) is defined as

U(p) = inf {\(C)|P(C) > u,C € C} wherey € (0,1]. (77)

We denote byC, (1) andCy* (1) the (not necessarily uniqué) € € that attain the infimum (when it
is achievable) o (z) and on the empirical measure given Byrespectively. A common choice of
is Lebesgue measure, in which casg(y:) is the minimum volume sef' € C that contains at least a
fraction i of the probability mass.

Support estimation requires us to find so@¥g () such thatP (C7*(n)) — p| is small. This is where
the complexity trade-off enters: On the one hand, we want to use a richddlasspture all possible dis-
tributions, on the other hand large classes lead to large deviations beiveeet? (C7*(1)). Therefore,
we have to consider classes of sets which are suitably restricted. This can be achieved using an SVM
regularizer.

In the case wherg < 1, it seems the first work was reported in Sager [1979] and Hartigan [1987],
in which X = R2, with € being the class of closed convex setsXin Nolan [1991] considered higher
dimensions, with being the class of ellipsoids. Tsybakov [1997] studied an estimator based on piece-
wise polynomial approximation of’,(x) and showed it attains the asymptotically minimax rate for
certain classes of densities. Polonik [1997] studied the estimatiam i) by C{*(1). He derived
asymptotic rates of convergence in terms of various measures of richn€sshdbre information on
minimum volume estimators can be found in that work, and ind8apf et al. [2001].

SV support estimation works by using SV support estimation relates to previous work as follows: set
MCy) = |Jw|? whereC,, = {z|f,(z) > p}, fu(z) = (w,z), and(w, p) are respectively a weight
vector and an offset. Stated as a convex optimization problem we want to separate the data from the origin
with maximum margin via:

1 - :
minimize - |Jw||® + Zfi — nvp subjectto(w, x;) > p — & and§; > 0. (78)
wép 2 p

Here,v € (0, 1] plays the same role as in (75), controlling the number of observatipfsr which
f(x;) < p. Since nonzero slack variablgsare penalized in the objective functiongifandp solve this
problem, then the decision functigi{z) will attain or exceed for at least a fraction — v of the z;
contained inX while the regularization terrfw|| will still be small. The dual of (78) yields:

1 .
minimize iaTKa subject ton'" 1 = vn anda; € [0, 1] (79)

To compare (79) to a Parzen windows estimator assumektigmsuch that it can be normalized as a
density in input space, such as a Gaussian. Using 1 in (79) the constraints automatically imply
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a; = 1. Thusf reduces to a Parzen windows estimate of the underlying density: Eot, the equality
constraint (79) still ensures thgtis a thresholded density, now depending only @ulsebf X — those
which are important for deciding whethg(x) < p.

3.3 Regression Estimation

SV regression was first proposed in Vapnik [1995], Vapnik et al. [1997], and Drucker et al. [1997] using
the so-called-insensitive loss function. It is a direct extension of the soft-margin idea to regression:
instead of requiring thajf (z) exceeds some margin value, we now require that the valueg(x) are
bounded by a margin on both sides. That is, we impose the soft constraints

yi — f(x) < e —&andf(r;) —y <€ =& (80)

where¢;, & > 0. If ly; — f(x;)| < e no penalty occurs. The objective function is given by the sum
of the slack variableg;, ¢/ penalized by som& > 0 and a measure for the slope of the function
f(x) = (w,z) + b, thatis? [lwl]|.

Before computing the dual of this problem let us consider a somewhat more general situation where
we use a range of different convex penalties for the deviation betwyesmd f («;). One may check that
minimizing £ wl|®> +C Yot & + & subject to (80) is equivalent to solving

minimize - [w]]* + 3" ¥(s — (2:)) whereu(€) = max (0, |¢] — ). (81)
7 i=1

Choosing different loss functionsleads to a rather rich class of estimators:

o Y(&) = %52 yields penalized least squares (LS) regression [Hoerl and Kennard, 1970, Tikhonov,

1963, Morozov, 1984, Wahba, 1990]. The corresponding optimization problem can be minimized
by solving a linear system.

e Fory (&) = |¢| we obtain the penalized least absolute deviations (LAD) estimator [Bloomfield and
Steiger, 1983]. That is, we obtain a quadratic program to estimate the conditional median.

e A combination of LS and LAD loss yields a penalized version of Huber’s robust regression [Huber,
1981, Smola and Sattkopf, 1998]. In this case we have¢) = ;=& for [¢| < o andy (&) = [€]—F
for [£] > o.

e Note that also quantile regression [Koenker, 2005] can be modified to work with kernets{&uh
etal., 2000, Takeuchi et al., 2006] by using as loss function the “pinball” loss, thégjs= (1—7)v
if v <0andy(§) =71y if ¢ > 0.

All the optimization problems arising from the above five cases are convex quadratic programs. Their
dual resembles that of (80), namely

1
minimize i(a —a)TK(a—a)+e (a+a”)—y'(a—a) (82a)

a,a*

subject tola — a*) "1 = 0 anday;, o € [0, C). (82b)

Here K;; = (x;,z;) for linear models ands;; = k(z;, ;) if we mapz — @(x). Thewv-trick, as
described in (75) [Sdbikopf et al., 2000], can be extended to regression, allowing one to choose the
margin of approximation automatically. In this case (82a) drops the termslimits place, we add a
linear constrainfa — a*) "1 = vn. Likewise, LAD is obtained from (82) by dropping the termsein
without additional constraints. Robust regression leaves (82) unchanged, however, in the defidition of
we have an additional term of! on the main diagonal. Further details can be found ino8aipf and
Smola [2002]. For Quantile Regression we deopnd we obtain different constanf&1 — 7) andCr

for the constraints om* anda. We will discuss uniform convergence properties of the empirical risk
estimates with respect to varioy$¢) in Section 4.
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3.4 Multicategory Classification, Ranking and Ordinal Regression

Many estimation problems cannot be described by assumindjtkat{+1}. In this case it is advan-
tageous to go beyond simple functioffi&z) depending on: only. Instead, we can encode a larger
degree of information by estimating a functigiix,y) and subsequently obtaining a prediction via
9(x) = argmax,.y f(z,y). In other words, we study problems wheyes obtained as the solution
of an optimization problem ovef(z, y) and we wish to fingf such thaty matchesy; as well as possible
for relevant inputs:.

Note that the loss may be more than just a sinple1 loss. In the following we denote b (y, y)
the loss incurred by estimating instead ofy. Without loss of generality we require that(y, y) = 0
and thatA(y,y’) > 0 forall y, 3’ € Y. Key in our reasoning is the following:

Lemmal2 Letf : X x Y — R and assume thah(y,y’) > 0 with A(y,y) = 0. Moreover let > 0
such thatf (z,y) — f(z,y') > A(y,y') — {forall y’ € Y. Inthis case > A(y, argmax,, ¢y f(z,9')).

Proof Denote byy* := argmax,cy f(z,y). By assumption we haxe> A(y,y*) + f(z,y*) — f(z,y).
Sincef(z,y*) > f(x,y’) forall y € Y the inequality holds. |

The construction of the estimator was suggested in Taskar et al. [2003] and Tsochantaridis et al. [2005],
and a special instance of the above lemma is given by Joachims [2005]. While the bound appears quite
innocuous, it allows us to describe a much richer class of estimation problems as a convex program.

To deal with the added complexity we assume thas given by f(z,y) = (®(z,y),w). Given the
possibly nontrivial connection betweenandy the use of®(z,y) cannot be avoided. Corresponding
kernel functions are given by(z,y, 2’,y') = (®(z,y), (2, y’)). We have the following optimization
problem [Tsochantaridis et al., 2005]:

1 n
minir?ize 3 [|wl|® + C’Z{i st (w, ®(xg, y;) — P(zi,y)) > Ayi,y) — &, Vi€ nl,yeY. (83)

i=1

This is a convex optimization problem which can be solved efficiently if the constraints can be evalu-

ated without high computational cost. One typically employs column-generation methods [Hettich and

Kortanek, 1993, Btsch, 2001, Bennett et al., 2000, Tsochantaridis et al., 2005, Fletcher, 1989] which

identify one violated constraint at a time to find an approximate minimum of the optimization problem.
To describe the flexibility of the framework set out by (83) we give several examples below:

e Binary classification can be recovered by setting:, y) = y®(z), in which case the constraint of
(83) reduces t@y; (®(z;),w) > 1 — &;. lgnoring constant offsets and a scaling factog pthis is
exactly the standard SVM optimization problem.

e Multicategory classification problems [Crammer and Singer, 2001, Collins, 2000, Allwein et al.,
2000, Ratsch et al., 2003] can be encoded Yia= [N], whereN is the number of classes and
A(y,y') = 1 -4y, . In other words, the loss iswhenever we predict the wrong class anfbr
correct classification. Corresponding kernels are typically chosendp pé(z, z').

e We can deal with joint labeling problems by settiig= {£1}". In other words, the error measure
does not depend on a single observation but on an entire set of labels. Joachims [2005] shows that
the so-called”; score [van Rijsbergen, 1979] used in document retrieval and the area under the ROC
curve [Bamber, 1975, Gribskov and Robinson, 1996] fall into this category of problems. Moreover,
Joachims [2005] derives ai(n?) method for evaluating the inequality constraint oyer

e Multilabel estimation problems deal with the situation where we want to find the best subset of
labelsy C 2[¥T which correspond to some observatianThe problem is described in Elisseeff and
Weston [2001], where the authors devise a ranking scheme sucf(tha} > f(z,7) if labeli € y
andj € y. Itis a special case of a general ranking approach described next.
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Note that (83) is invariant under translatiofgz,y) — ®(x,y) + ®9 where &, is constant, as
®(x;,y;) — ®(z;,y) remains unchanged. In practice this means that transformationg, z’,y’') —
k(z,y,2',y') + (®g, ®(x,y)) + (Pg, (2, y")) + ||Po||?> do not affect the outcome of the estimation
process. Sincé, was arbitrary, we have the following lemma:

Lemma 13 Let I be an RKHS oriX x Y with kernelk. Moreover letg € H. Then the function
k(z,y, ', y') + f(z,y) + f(2',y') + ||lg9]|% is a kernel and it yields the same estimate& as

We need a slight extension to deal with general ranking problems. Dendteb¢raph[N] the set
of all directed graphs oV vertices which do not contain loops of less than three nodes. Here an edge
(i,4) € y indicates that is preferred tgj with respect to the observatian It is the goal to find some
function f : X x [N] — R which imposes a total order diV] (for a givenx) by virtue of the function
valuesf(x, i) such that the total order andare in good agreement.

More specifically, Dekel et al. [2003] and Crammer and Singer [2005] propose a decomposition algo-
rithm A for the graphg, such that the estimation error is given by the number of subgraphsvbich
are in disagreement with the total order imposedfbyAs an example, multiclass classification can be
viewed as a graply where the correct labeélis at the root of a directed graph and all incorrect labels
are its children. Multilabel classification is then a bipartite graph where the correct labels only contain
outgoing arcs and the incorrect labels only incoming ones.

This setting leads to a form similar to (83) except for the fact that we now have constraints over each
subgraphG € A(y). We solve

o1 - _
minimize lwl* + > AW Y G (84)
e i=1 GeA(y:)
subject to(w, ®(z;, u) — ®(x;,v)) > 1 — & andé;¢ > 0forall (u,v) € G € A(y;).

That is, we test for al{u, v) € G whether the ranking imposed Iy € y; is satisfied.

Finally, ordinal regression problems which perform ranking not over lapbl# rather over observa-
tionsa were studied by Herbrich et al. [2000] and Chapelle and Harchaoui [2005] in the context of ordinal
regression and conjoint analysis respectively. In ordinal regressgpreferred ta:’ if f(x) > f(z') and
hence one minimizes an optimization problem akin to (83), with constfain® (z;) — ®(x;)) > 1-¢;;.

In conjoint analysis the same operation is carried ouffar, u), whereu is the user under consideration.
Similar models were also studied by Basilico and Hofmann [2004]. Further models will be discussed in
Section 5, in particular situations wheleis of exponential size. These models allow one to deal with
sequences and more sophisticated structures.

3.5 Applications of SVM Algorithms

When SVMs were first presented, they initially met with scepticism in the statistical community. Part of
the reason was that as described, SVMs construct their decision rules in potentially very high-dimensional
feature spaces associated with kernels. Although there was a fair amount of theoretical work addressing
this issue (see Section 4 below), it was probably to a larger extent the empirical success of SVMs that
paved its way to become a standard method of the statistical toolbox. The first successes of SVMs on prac-
tical problem were in handwritten digit recognition, which was the main benchmark task considered in
the Adaptive Systems Department at AT&T Bell Labs where SVMs were developed (see e.g. LeCun et al.
[1998]). Using methods to incorporate transformation invariances, SVMs were shown to beat the world
record on the MNIST benchmark set, at the time the gold standard in the field [DeCoste @fdpich

2002]. There has been a significant number of further computer vision applications of SVMs since then,
including tasks such as object recognition [Blanz et al., 1996, Chapelle et al., 1999, Holub et al., 2005,
Everingham et al., 2005] and detection [Romdhani et al., 2004]. Nevertheless, it is probably fair to say
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that two other fields have been more influential in spreading the use of SVMs: bioinformatics and natural
language processing. Both of them have generated a spectrum of challenging high-dimensional problems
on which SVMs excel, such as microarray processing tasks [Brown et al., 2000] and text categorization
[Dumais, 1998]. For further references, see@kbpf et al. [2004] and Joachims [2002].

Many successful applications have been implemented using SV classifiers; however, also the other
variants of SVMs have led to very good results, including SV regressidati¢ket al., 1997], SV novelty
detection [Hayton et al., 2001], SVMs for ranking [Herbrich et al., 2000] and more recently, problems
with interdependent labels [Tsochantaridis et al., 2005, McCallum et al., 2005].

At present there exists a large number of readily available software packages for SVM optimization.
For instance, SVMStruct, based on [Tsochantaridis et al., 2005] solves structured estimation problems.
LibSVM is an open source solver which excels on binary problems. The Torch package contains a
number of estimation methods, including SVM solvers. Several SVM implementations are also available
via statistical packages, such as R.

4 Margins and Uniform Convergence Bounds

So far we motivated the algorithms by means of their practicality and the fadd thdt loss functions
yield hard-to-control estimators. We now follow up on the analysis by providing uniform convergence
bounds for large margin classifiers. We focus on the case of scalar valued functions applied to classifi-
cation for two reasons: The derivation is well established and it can be presented in a concise fashion.
Secondly, the derivation of corresponding bounds for the vectorial case is by and large still an open prob-
lem. Preliminary results exist, such as the bounds by Collins [2000] for the case of perceptrons, Taskar
et al. [2003] who derive capacity bounds in terms of covering numbers by an explicit covering construc-
tion, and Bartlett and Mendelson [2002], who give Gaussian average bounds for vectorial functions. We
believe that the scaling behavior of these bounds in the number of cladgsescurrently not optimal,
when applied to the problems of type (83).

Our analysis is based on the following ideas: firstly @he 1 loss is upper bounded by some function
¥ (yf(x)) which can be efficiently minimized, such as the soft margin funatiem(0, 1 — y f(x)) of the
previous section. Secondly we prove that the empirical average @f-thss is concentrated close to its
expectation. This will be achieved by means of Rademacher averages. Thirdly we show that under rather
general conditions the minimization of thieloss is consistent with the minimization of the expected risk.
Finally, we combine these bounds to obtain rates of convergence which only depend on the Rademacher
average and the approximation properties of the function class under consideration.

4.1 Margins and Empirical Risk

While the sign ofy f(x) can be used to assess the accuracy of a binary classifier we saw that for al-
gorithmic reasons one rather optimizes (a smooth functioryéf)) directly. In the following we
assume that the binary losg¢) = %(1 — sgn¢) is majorized by some functiop(¢) > x(&),

e.g. via the construction of Lemma 12. Consequelliy(yf(z))] < E[¢(yf(z))] and likewise

Eenp [X(yf(2))] < Eemp [¥(yf(2))]. The hope is (as will be shown in Section 4.3) that minimizing
the upper bound leads to consistent estimators.

There is a long-standing tradition of minimizing («) rather than the number of misclassifications.
yf(z) is known as “margin” (based on the geometrical reasoning) in the context of SVMs [Vapnik and
Lerner, 1963, Mangasarian, 1965], as “stability” in the context of Neural Networks [Krauth &meri|
1987, Rugan, 1993], and as the “edge” in the context of arcing [Breiman, 1999]. One may show [Makovoz,
1996, Barron, 1993, Herbrich and Williamson, 2002] that functignia an RKHS achieving a large
margin can be approximated by another functjdrachieving almost the same empirical error using a
much smaller number of kernel functions.

Note that by default, uniform convergence bounds are expressed in terms of minimization of the em-
pirical risk average with respect tdigedfunction classF, e.g. Vapnik and Chervonenkis [1971]. This is
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very much unlike what is done in practice: in SVM (83) the sum of empirical risk and a regularizer is min-
imized. However, one may check that minimiziRig,,,, [+/(yf ())] subject to||w||> < W is equivalent

to minimizingEemp, [¢¥(yf(x))] + A ||lwl|* for suitably chosen values of The equivalence is immediate

by using Lagrange multipliers. For numerical reasons, however, the second formulation is much more
convenient [Tikhonov, 1963, Morozov, 1984], as it acts as a regularizer. Finally, for the design of adap-
tive estimators, so-called luckiness results exist, which provide risk bounds in a data-dependent fashion
[Shawe-Taylor et al., 1998, Herbrich and Williamson, 2002].

4.2 Uniform Convergence and Rademacher Averages

The next step is to bound the deviati®h,,, [ (yf(x))] — E[¢(yf(x))] by means of Rademacher
averages. For details see Bousquet et al. [2005], Mendelson [2003], Bartlett et al. [2002], and
Koltchinskii [2001]. Denote byg : X — R a function ofrn variables and let > 0 such that

lg(z1, ..o xn) — g(@1, oo Tim1, X Tig1, - - oy xn)| < cforall zq, ..., z,, 25 € X and for alli € [n],

then [McDiarmid, 1989]

P{E[g(z1,...,2y)] — g(21,...,2n) > €} < exp (—2¢*/nc?) . (85)

Assume thatf(z) € [0, B] for all f € F and letg(x1,...,7,) = sup g [Bemp [f(2)] — E[f(2)]].
Then it follows thate < % Solving (85) forg we obtain that with probability at lea$t— §

log 0
2n

sup E [f(2)] = Eemp [f(2)] < E
e

sup E [f(2)] — Eemp [f(2)]| + B

fex

(86)

This means that with high probability the largest deviation between the sample average and its expectation
is concentrated around its mean and within@f~2) term. The expectation can be bounded by a
classical symmetrization argument [Vapnik and Chervonenkis, 1971] as follows:

Ex |sup E[f(x/)] - Eemp[f(x)]] < Ex x/ [sup Eemp[f(ml)] - Eemp[f(x)]]
feF fegF

=Ex x/ o |sup Eemp[o f(2")] — Eemp [af(a:)]l <2Ex . |sup Eemp [af(a:)]l =: 2R, [F].
feF feF

The first inequality follows from the convexity of the argument of the expectation, the second equality
follows from the fact thatc; and«} are drawn i.i.d. from the same distribution, hence we may swap
terms. Herer; are independent1-valued zero-mean Rademacher random varialited¥] is referred
as the Rademacher average [Mendelson, 2001, Bartlett and Mendelson, 2002, Koltchinskii, 2D01] of
wrt. sample sizer.

For linear function classe, [F] takes on a particularly nice form. We begin with :=
{f1f(z) = (z,w) and |lw|| < 1}. Itfollows thatsup <1 > iy i (w,z:) = |37, 0. Hence

” %: Ex Z ||x1-||2r <\ [nE [l2]*).

(87)
Here the first inequality is a consequence of Jensen’s inequality, the second equality follows from the fact
thato; are i.i.d. zero-mean random variables, and the last step again is a result of Jensen’s inequality.
Corresponding tight lower bounds by a factorigfy/2 exist and they are a result of the Khintchine-
Kahane inequality [Kahane, 1968].

i=1

n
g 0%
i=1
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Note that (87) allows us to boun, [F] < n~%r wherer is the average norm of vectors in the
sample. An extension to kernel functions is straightforward: by design of the inner product we have
r = /E, [k(z,z)]. Note that this bound i;mdependenotf the dimensionality of the data but rather only
depends on the expected norm of the input vectors. Moreowven also be interpreted as the trace of the
integral operator with kernél(x, 2') and probability measure dk.

Since we are computinBenm, [ (v f(z))] we are interested in the Rademacher complexity of F.
Bartlett and Mendelson [2002] show th@}, [¢) o F] < LR, [F] for any Lipschitz continuous function
with Lipschitz constant and withiy(0) = 0. Secondly, fo{yb where|b| < B} the Rademacher average
can be bounded b /2 1log 2/n, as follows from [Bousquet et al., 2005, eq. (4)]. This takes care of the
offsetb. For sums of function classésand G we haveR, [F+ §] < R, [F] + R, [F]. This means
that for linear functions withw|| < W, |b| < B, andy Lipschitz continuous with constart we have

R, < %(Wr + B+/2log2).

4.3 Upper Bounds and Convex Functions

We briefly discuss consistency of minimization of the surrogate loss fun¢tioR — [0, co), which we
assume to be convex andmajorizing, i.ea) > x [Jordan et al., 2003, Zhang, 2004]. Examples of such
functions are the soft-margin lossax(0, 1 — v¢), which we discussed in Section 3, the Boosting Loss
e~¢, which is commonly used in AdaBoost [Schapire et al., 19%8s8h et al., 2001], and the logistic
lossln (1 + e~¢) (see Section 5).

Denote byf; the minimizer of the expected risk and |£] be the minimizer ofE [ (y f(z)] with
respect tof. Then under rather general conditionswifizhang, 2004] for allf the following inequality
holds:

E [x(yf(2)] = E [x(yf; ()] < c(B(yf ()] —E [Wyf;)])’ (88)
In particular we have = 4 ands = 1 for soft margin loss, whereas for Boosting and logistic regres-
sionc = V8 ands = % Note that (88) implies that the minimizer of theloss is consistent, i.e.

E[x(yfy(2))] = E x(yfx(2))]-

4.4 Rates of Convergence

We now have all tools at our disposition to obtain rates of convergence to the minimizer of the expected
risk which depend only on the complexity of the function class and its approximation properties in terms
of the-loss. Denote by 5 the minimizer ofE [ (y f(x))] restricted tdF, let f;; 5 be the minimizer

of the empiricakp-risk, and let§(F,¢) := E [yf;;?g(x)} —E [yf{Z(:c)} be the approximation error due
to the restriction off to F. Then a simple telescope sum yields

E [x(wf})] <E[x@wfi)] +4[E [YWfis)] — Eemp [0 WS} 5)]]
+ 4 [Eemp V(WS 5)] —E [Y(uf}5)]] +0(F, )

<E [x(yfy)] +0(F,¢) + 4R7\I//VH7 {\/—210g5 +7/R+ \/8log2} . (89)

Here~ is the effective margin of the soft-margin lossx (0,1 — vy f(z)), W is an upper bound offw||,

R > ||z||, r is the average radius, as defined in the previous section, and we assunteis thainded

by the largest value ofw, z). A similar reasoning for logistic and exponential loss is given in Bousquet
et al. [2005].

Note that we get a®(1/+/n) rate of convergence regardless of the dimensionality.oMoreover
note that the rate is dominated BV ~, that is, the classical radius-margin bound [Vapnik, 1995]. Here
R is the radius of an enclosing sphere for the data Bf{#ll’~y) is an upper bound on the radius of the
data — the soft-margin loss becomes active onlyyfffz) < ~.
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4.5 Localization and Noise Conditions

In many cases it is possible to obtain better rates of convergenc&thidrn/n) by exploiting information

about the magnitude of the error of misclassification and about the variant@mf(. Such bounds

use Bernstein-type inequalities and they lead to localized Rademacher averages [Bartlett et al., 2002,
Mendelson, 2003, Bousquet et al., 2005].

Basically the slowD(1/,/n) rates arise whenever the region around the Bayes optimal decision bound-
ary is large. In this case, determining this region produces the slow rate, whereas the well-determined
region could be estimated at &{1/n) rate.

Tsybakov's noise condition [Tsybakov, 2003] requires that there gxist> 0 such that

P{'P{y:1|x}—;’<t}</6’t7forallt>(). (90)

Note that fory = oo the condition implies that there exists somsuch tha{P {y = 1|z} — | > s > 0
almost surely. This is also known as Massart’s noise condition.

The key benefit of (90) is that it implies a relationship between variance and expected value of classi-
fication loss. More specifically far = ﬁ andg : X — Y we have

E [[{g(z) # y} — {g"(@) £ 9}°] < c B o) £ v} — " (2) £} (91)

Hereg*(z) := argmax, P(y|z) denotes the Bayes optimal classifier. This is sufficient to obtain faster
rates for finite sets of classifiers. For more complex function classes localization is used. See, e.g.
Bousquet et al. [2005] and Bartlett et al. [2002] for more details.

5 Statistical Models and RKHS

As we have argued so far, the Reproducing Kernel Hilbert Space approach offers many advantages in
machine learning: (i) powerful and flexible models can be defined, (i) many results and algorithms for
linear models in Euclidean spaces can be generalized to RKHS, (iii) learning theory assures that effective
learning in RKHS is possible, for instance, by means of regularization.

In this chapter, we will show how kernel methods can be utilized in the contestati§tical models
There are several reasons to pursue such an avenue. First of all, in conditional modeling, it is often
insufficent to compute a prediction without assessing confidence and reliability. Second, when dealing
with multiple or structured responses, it is important to magglendencies between resporisegldition
to the dependence on a set of covariates. Third, incomplete data, be it due to missing variables, incomplete
training targets, or a model structure involving latent variables, needs to be dealt with in a principled
manner. All of these issues can be addressed by using the RKHS approach to define statistical models and
by combining kernels with statistical approaches such as exponential models, generalized linear models,
and Markov networks.

5.1 Exponential RKHS Models
5.1.1 Exponential Models

Exponential models cgxponential familiesire among the most important class of parametric models
studied in statistics. Given a canonical vector of statisticmnd ac-finite measures over the sample
spaceX, an exponential model can be defined via its probability density with respedcfoBarndorff-
Nielsen [1978]),

p(x;0) = exp [(6, ®(x)) — g(h)], where g¢(f):=In /x el 2@) dy (). (92)
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Them-dimensional vectof € © with ©:={0 € R™ : ¢(f) < oo} is also called theanonical parameter

vector. In general, there are multiple exponential representations of the same model via canonical param-
eters that are affinely related to one another (Murray and Rice [1993]). A representation with minimal

is called a minimal representation, in which casés theorder of the exponential model. One of the most
important properties of exponential families is that they have sufficient statistics of fixed dimensionality,
i.e. the joint density for i.i.d. random variablg§,, X, ..., X,, is also exponential, the corresponding
canonical statistics simply beig " ; (X;). It is well-known that much of the structure of exponential
models can be derived from the log partition functigf), in particular (cf. Lauritzen [1996])

Vog(0) = n(0) :==Eo [®(X)],  jg(0) = Vo [(X)], (93)

wherep is known as the mean-value map. Being a covariance matrix, the Hessjaa pbsitive semi-
definite and consequentlyis convex.

Maximum likelihood estimation (MLE) in exponential families leads to a particularly elegant form for
the MLE equations: the expected and the observed canonical statistics agree at the Fi€means,
given an i.i.d. samplé = (z;)ie[n),

B [P(X)] = p(0) = = > B(ai)=s s [B(X)] (94

5.1.2 Exponential RKHS Models

One can extend the parameteric exponential model in (92) by defining a statistical model via an RKHS
J with generating kernet. Linear function(f, ®(-)) overX are replaced with functiong € 3, which
yields an exponential RKHS model

p(l';f) :exp[f(x) _g(f)]7 f G}C::{f : f() :Zazk('vx)’ 8§ C X, |S| < OO} . (95)

EAS)

A justification for using exponential RKHS families with rich canonical statistics as a generic way to
define non-parametric models stems from the fact that if the chosen Kersgdowerful enough, the
associated exponential families become universal density estimators. This can be made precise using the
concept of universal kernels (Steinwart [2002a], cf. Section 2).

Proposition 14 (Dense Densities) et X be a measurable set with a fixeefinite measures and denote
by P a family of densities off with respect tar such thatp € P is uniformly bounded from above and
continuous. Lek : X x X — R be a universal kernel fof{. Then the exponential RKHS family of
densities generated yaccording to Eq(95) are dense it? in the L, sense.

Proof Let D :=sup, ||p||~ and chose) = (e, D) > 0 appropriately (see below). By the universality
assumption for every € P there existsf € H such that]|f — lnp|. < 5. Exploiting the strict
convexity of the exp-function one gets that’p < e/ < e7p, which directly impliese™" < e9(/) =
Jy e’ @ dv(z) < . Moreover|lef — p|| < D(e" — 1), and hence

Ip(f) = plloe < lle? = pllos + €79 — el o < D(e” = 1)(1 + €") < 2De (" — 1),

where we utilized the upper bound

6799 = eFloe < e~ 1] lef ow < (7 = D)lef o < De(e? ~ 1),

Equaling withe and solving fom; results inn(e, D) = In (% + 3 /1+4 %) > 0. |
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5.1.3 Conditional Exponential Models

For the rest of the paper, we will focus on the case of predictive or conditional modeling with a —
potentially compound or structured — response variabland predictor variable. Taking up the
concept of joint kernels introduced in the previous section, we will investigate conditional models that
are defined by functiong : X x Y — R from some RKHSK overX x Y with kernelk as follows

ol ) = explf(e.9) gl f)], where e f)=In [ SePiy).(96)
Notice that in the finite-dimensional case we have a feature®nalf x Y — R™ from which parametric
models are obtained VI& :={f : Jw, f(z,y) = f(z,y;w):=(w, P(x,y))} and eachf can be identi-
fied with its parametew. Let us discuss some concrete examples to illustrate the rather general model
equation (96).

e LetY be univariate and defin@(x,y) = y®(z). Then simplyf(z,y;w) = (w,®(z,y)) =
yf(z;w), with f(z; w) := (w, (z)) and the model equation in (96) reduces to

p(ylz; w) = exp [y (w, ®(z)) — g(z, w)] . (97)

This is ageneralized linear mod€lGLM) (Nelder and Wedderburn [1972], McCullagh and Nelder
[1983]) with a canonical link, i.e. the canonical parameters depend linearly on the covériades

For different response scales we get several well-known models such as, for instance, logistic re-
gression wherg € {—1,1}.

¢ In the non-parameteric extension of generalized linear models following [Green and Yandell, 1985,
O’Sullivan et al., 1986] the parametric assumption on the linear predictarw) = (w, ®(z)) in
GLMs is relaxed by requiring that comes from some sufficiently smooth class of functions, namely
a RKHS defined ovek. In combination with a parametric part, this can also be used to define semi-
parametric models. Popular choices of kernels include the ANOVA kernel investigated in Wahba
et al. [1995]. This is a special case of defining joint kernels from an existing kieedr inputs via
k((z,y), (2',y")) = yy'k(z, o).

e Joint kernels provide a powerful framework for prediction problems with structured outputs. An il-
luminating example is statistical natural language parsing with lexicalized probabilistic context free
grammars (cf. Magerman [1996]). Herewill be an English sentence amch parse tree fat, i.e. a
highly structured and complex output. The productions of the grammar are known, but the condi-
tional probabilityp(y|x) needs to be estimated based on training data of parsed/annotated sentences.
In the simplest case, the extracted statistiaaay encode the frequencies of the use of different pro-
ductions in a sentence with known parse tree. More sophisticated feature encodings are discussed in
Taskar et al. [2004], Zettlemoyer and Collins [2005]. The conditional modeling approach provide al-
ternatives to state-of-the art approaches that estimate joint medelg) with maximum likelihood
or maximum entropy (Charniak [2000]) and obtain predictive models by conditioning on

5.1.4 Risk Functions for Model Fitting

There are different inference principles to determine the optimal fungtiend for the conditional
exponential model in (96). One standard approach to parametric model fitting is to maximize the condi-
tional log-likelihood — or equivalently — minimize a logarithmic loss, a strategy pursued in the Conditional
Random Field (CRF) approach of Lafferty et al. [2001]. Here we consider the more general case of min-
imizing a functional that includes a monotone function of the Hilbert space figiw: as a stabilizer
(cf. Wahba [1990]). This reduces to penalized log-likelihood estimation in the finite dimensional case,

M8y = Z p(yile: £, f'(8):=argmin 1Sl +C(f:8). (98)
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e For the parametric case, Lafferty et al. [2001] have employed variants of improved iterative scal-
ing (Della Pietra et al. [1997], Darroch and Ratcliff [1972]) to optimize Eq.(98) whereas Sha and
Pereira [2003] have investigated preconditioned conjugate gradient descent and limited memory
guasi-Newton methods.

e In order to optimize EQ.(98) one usually needs to compute expectations of the canoncial statistics
E;[®(Y,z)] at sample points = xz;, which requires the availability of efficient inference algo-
rithms.

As we have seen in the case of classification and regression, likelihood-based criteria are by no means
the only justifiable choice and large margin methods offer an interesting alternative. To that extend,
we will present a general formulation of large margin methods for response variables over finite sample
spaces that is based on the approach suggested by Altun et al. [2003] and Taskar et al. [2003]. Define

CFy _ p(ylz; f)

r(z,y; f)=f(z,y) g}%f(xyy ) = minlog o' )
Herer(8; f) generalizes the notion of separation margin used in SVMs. Since the log-odds ratio is
sensitive to rescaling of, i.e.r(z,y; 8f) = Br(z,y; f), we need to constraihf || 5c to make the problem
well-defined. We thus replacg by ¢~ f for some fixed dispersion parametgr> 0 and define the
maximum margin problenﬁmm(S) =g~ 1 argmax =1 7(8; f/¢). For the sake of the presentation, we
will drop ¢ in the following?® Using the same line of arguments as was used in Section 3, the maximum
margin problem can be re-formulated as a constrained optimization problem

and 7 (S; ) i=minr(ei,yi f). (99)

A 1
F™(8) ::argmianng{, s.t. r(xy, yi; f) > 1,Vi € [n], (100)
feX 2

provided the latter is feasible, i.e. if there exigte H such that(S; f) > 0. To make the connection to
SVMs consider the case of binary classification vi#ttx, y) = y®(x), f(x,y;w) = (w, y®(x)), where
r(z,y; f) = (w,y®(x)) — (w, —y®(z)) = 2y (w, P(x)) = 2p(x, y; w). The latter is twice the standard
margin for binary classification in SVMs.

A soft margin version can be defined based on the Hinge loss as follows

C"(f;8): Zmln{l —r(xs,yi5 £),0},  Fo(8) ::al}genjlcin/2\||f||%c+0h'(f,8). (101)

e An equivalent formulation using slack variablgsas discussed in Section 3 can be obtained by
introducing soft-margin constraint$x;, y;; f) > 1 — &;, & > 0 and by definingC" = %gi. Each
non-linear constraint can be further expanded jdtdinear constraintg (z;, y;) — f(x;,y) > 1-¢;
for all y # y;.

¢ Prediction problems with structured outputs often involve task-specific loss funktidnx Y — R
discussed in Section 3.4. As suggested in Taskar et al. [2003] cost sensitive large margin methods
can be obtained by defining re-scaled margin constrdifits v;) — f(z:,y) > A(yi, y) — &.

¢ Another sensible option in the parametric case is to minimize an exponential risk function of the
following type

Fo2(8) = argmin Z > exp[f (i, iz w) — @i, y;w)] - (102)

=1 yAy;

This is related to the exponential loss used in the AdaBoost method of Freund and Schapire [1996].
Since we are mainly interested in kernel-based methods here, we refrain from further elaborating on
this connection.

*We will not deal with the problem of how to estimatehere; note, however, that one does need to kpdw
order to make an optimal determinisitic prediction.
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5.1.5 Generalized Representer Theorem and Dual Soft-Margin Formulation

Itis crucial to understand how the representer theorem applies in the setting of arbitrary discrete output
spaces, since a finite representation for the optifnal {f”,fsm} is the basis for constructive model
fitting. Notice that the regularized log-loss as well as the soft margin functional introduced above depend
not only on the values of on the samplé, but rather on the evaluation ¢gfon the augmented sample
8:={(zi,y) : i € [n], y € Y}. This is the case, because for eaghoutput valueg, # y; not observed
with z; show up in the log-partition functiog(z;, f) in (96) as well as in the log-odds ratios in (99). This
adds an additional complication compared to binary classification.

Corollary 15 Denote byH an RKHS onX x Y with kernelk and let§ = ((x;,y:))icn). Further-

more letC(f;8) be a functional depending ofi only via its values on the augmented sample
Let © be a strictly monotonically increasing function. Then the solution of the optimization problem
f(8) :=argmin ;4 O(f;8) + Q|| f]|ac) can be written as:

Z > Biyk(, (wi,1)) (103)

i=1yey

This follows directly from Theorem 11. A
Let us focus on the soft margin maximizgr™. Instead of solving (101) directly, we first derive the
dual program, following essentially the derivation in Section 3.

Proposition 16 (Tsochantaridis et al. [2005])The minimizerAsm(S) can be written as in Corollary 15
where the expansion coefficients can be computed from the solution of the following convex quadratic
program

o :arginin {; i Z Z iy Oy Koy oy — i Z aiy} (104a)

,j=1y#y: v #y; =1 y#y;

s.t. An Z iy <1, Vien];, am>0 Viecnl,yeYy, (104b)
Y7Yi

whereKy ;i :=k((zi,vi), (x5, 9;)) + k((zi,y), (25,9") = k((@i, 4), (25,9") — k((@3,9), (25, 95))-
Proof The primal program for soft-margin maximization can be expressed as

A 1 —
frélgi{l}gﬂ%(f,f,S) 1:§Hf||gc + E;&’ st fwi,yi) — f(wi,y) > 1 =&, Yy #vi; & >0, Vie [n].

Introducing dual variablesy;, for the margin constraints angj for the non-negativity constraints @
yields the Lagrange function (the objective has been dividey) by

L(.ﬂa) ::% <f7f>}( Z Zzaw 3717311 _f(mw 1+€z Z&znz-

=1 y#y;

Solving forf results in

VfL(f, ) =0 <= f Z Z azy mwyl)) k(? (xlvy))]

=1 y#y;
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since forf € H, V¢ f(z,y) = k(-, (z,y)). Solving for¢; impliesin}_, , i, < 1and plugging the
solution back intol yields the (negative) objective function in the claim. Finally note that the represen-
tation in (103)can be obtained by identifying

) Ty if y # yi
Dyy: Cy Y =y

e The multiclass SVM formulation of Crammer and Singer [2001] can be recovered as a special case
for kernels that are diagonal with respect to the outputs,ki(er, y), (z',y')) = 0y k(z,2’).
Notice that in this case the quadratic part in Eq. (104a) simplifies to

Z k(zi,xj) Z Qiy Ay [1 + OyiyOy; .y — Oyy — 5y.7,y] .
2] Yy

e The pairg(z;, y) for which;,, > 0 are thesupport pairs generalizing the notion of support vectors.
As in binary SVMs their number can be much smaller than the total number of constraints. Notice
also that in the final expansion contributiohs, (z;, y;)) will get non-negative weights whereas
k(- (z;,y)) for y # y; will get non-positive weights. Overall one gets a balance equattjgn—
> yy,; Biy = 0 for every data point.

5.1.6 Sparse Approximation

Proposition 16 shows that sparseness in the representatifit &f linked to the fact that only few
oy in the solution to the dual problem in Eq. (104) are non-zero. Note that each of these Lagrange
multipliers is linked to the corresponding soft margin constrdint;, v;) — f(z;,y) > 1 — ;. Hence,
sparseness is achieved, if only few constraints are active at the optimal solution. While this may or may
not be the case for a given sample, one can still exploit this observation to define a nested sequence of
relaxations, where margin constraint are incrementally added. This corresponds to a constraint selection
algorithm (cf. Bertsimas and Tsitsiklis [1997]) for the primal or — equivalently — a variable selection or
column generation method for the dual program and has been investigated in Tsochantaridis et al. [2005].
Solving a sequence of increasingly tighter relaxations to a mathematical problem is also known as an
outer approximation In particular, one may iterate through the training examples according to some
(fair) visitation schedule and greedily select constraints that are most violated at the current gglution
i.e. for thei-th instance one computes

§; = argmax f(z;,y) = argmax p(y|z;; f), (105)
Y#£Yi Y#Yi

and then strengthens the current relaxation by includiggin the optimization of the dual if (z;, ;) —

flxi,9:) < 1—¢& — e Heree > 0 is a pre-defined tolerance parameter. It is important to understand
how many strengthening steps are necessary to achieve a reasonable close approximation to the original
problem. The following theorem provides an answer:

Theorem 17 (Tsochantaridis et al. [2005])Let R = max; , K, ;;, and chosee > 0. A sequential
strengthening procedure, which optimizes Eif)1) by greedily selecting-violated constraints, will find
an approximate solution where all constraints are fulfilled within a precisiom, ofe. r(x;,y:; f) >

1 — & — e after at most - max {1 @} steps.

’ AnZe
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Corollary 18 Denote by(f, é) the optimal solution of a relaxation of the problem in Proposition 16,
minimizingR(f, £, 8) while violating no constraint by more thar(cf. Theorem 17). Then

R(f,6,8) < R(fM€",8) <R(f,€,8) +e
where(f*", ¢*) is the optimal solution of the original problem.

Proof The first inequality follows from the fact th&]f, é) is an optimal solution to a relaxation, the
second from the observation that by settihg- £ + ¢ one gets an admissible solutidfi, £) such that

R(f.6,8) = 313 + 5 Tina (i + ) = R(F.€.8) +e =

e Combined with an efficient QP solver, the above theorem guarantees a runtime polynomial'in
R, and)\~'. This holds irrespective of special properties of the data set utilized, the only exception
being the dependeny on the sample pointis through the radiug.

e The remaining key problem is how to compute Eq. (105) efficiently. The answer depends on the
specific form of the joint kernek and/or the feature mag@. In many cases, efficient dynamic
programming techniques exists, whereas in other cases one has to resort to approximations or use
other methods to identify a set of candidate distracers Y for a training painz;, y;) (cf. Collins
[2000]). Sometimes one may also have search heuristics available that may not find the solution to
Eq. (105), but that find (otheke}violating constraints with a reasonable computational effort.

5.1.7 Generalized Gaussian Processes Classification

The model Eq. (96) and the minimization of the regularized log-loss can be interpreted as a gener-
alization of Gaussian process classification (Rasmussen and Williams [2006], Altun et al. [2004b]) by
assuming thatf(z, -)).cx is a vector-valued zero mean Gaussian process; note that the covariance func-
tion C is defined over pair¥ x Y. For a given sampl&, define a multi-index vectaF'(8) :=(f(zi, y)):y
as the restriction of the stochastic proc¢sw the augmented samp$e Denote the kernel matrix by
K = (Kiy jy ), WhereK;, ;.. :=C((z;,y), (x;,y")) with indicesi,j € [n] andy,y’ € Y, so that in
summary:F(8) ~ N(0, K). This induces a predictive model via Bayesian model integration according
to

p(yl:8) = / p(y|F(x, ))p(FIS)dF (106)

wherex is a test point that has been included in the sample (transductive setting). For an i.i.d. sample the
log-posterior forF' can be written as

1 n
Inp(F|8) = —§FTK_1F + Z [f(zi,y;) — g(x;, F)] + const. (107)
i=1
Invoking the representer theorem f6(S8) := argmax - In p(F|$), we know that
B(8)iy =Y aiyKiyjy (108)
J=ly'ey

which we plug into Eq. (107) to arrive at

mina?Ka — Z (aTKeiy,i + log Z exp [ozTKeiy]) , (209)

« N
=1 yeY
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were e;; denotes the respective unit vector. Notice that for) = >, iy k(- (z:,y)) the first
term is equivalent to the squared RKHS norm pfe H since (f, f)q = 32, 2°, v QiyQjy

(k(-, (xi,v)),k(-, (x;,y'))). The latter inner product reducesi(x;, y), (z;,y’)) due to the reproduc-
ing property. Again, the key issue in solving Eq. (109) is how to achieve spareness in the expaniion for

5.2 Markov Networks and Kernels

In Section 5.1 no assumptions about the specific structure of the joint kernel defining the model in Eq. (96)
has been made. In the following, we will focus on a more specific setting with multiple outputs, where
dependencies are modeled by a conditional independence graph. This approach is motivated by the
fact that independently predicting individual responses based on marginal response models will often be
suboptimal and explicitly modelling these interactions can be of crucial importance.

5.2.1 Markov Networks and Factorization Theorem

Denote predictor variables b, response variables by and defineZ :=(X,Y’) with associated
sample spac&. We use Markov networks as the modeling formalism for representing dependencies
between covariates and response variables as well as interdependencies among response variables.

Definition 19 A conditional independence graph(or Markov network) is an undirected graph =
(Z, E) such that for any pair of variable§Z;, Z;) ¢ E ifand only if 2, L Z;|Z — {Z,, Z; }.

The above definition is based on the pairwise Markov property, but by virtue of the separation theorem
(cf. e.g. Whittaker [1990]) this implies the global Markov property for distributions with full support.
The global Markov property says that for disjoint sub$ét¥’, W C Z whereW separate#’ from V' in

G one has thal/ LV |IV. Even more important in the context of this paper is the factorization result due
to Hammersley and Clifford [1971] and Besag [1974].

Theorem 20 Given a random vectat with conditional independence gragh Any density function for
Z with full support factorizes ove?(§), the set of maximal cliques §fas follows:

p(z) =exp | Y felz) (110)

ceC(@)

where f. are cliqgue compatibility functions dependent oonly via the restriction on clique configura-
tionsz,.

The significance of this result is that in order to specify a distributiorZfoone only needs to specify or
estimate the simpler functionf.

5.2.2 Kernel Decomposition over Markov Networks

Itis of interest to analyse the structure of kernfethat generate Hilbert spacg&of functions that are
consistent with a graph.

Definition 21 A functionf : Z — R is compatible with a conditional independence gragh if f
decomposes additively g%z) = Zcee(g) fe(z.) with suitably chosen functions. A Hilbert spaceH
overZ is compatible witls, if every functionf € 3 is compatible witt§. Suchf andJ are also called
G-compatible.
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Proposition 22 LetJH with kernelk be aG-compatible RKHS. Then there are functidng : Z. x Z4 —
R such that the kernel decomposes as

k(u,z) = Z kea(tc, za) -

c,deC

Proof Letz € Z, thenk(-,z) = k(z,-) € H and by assumption for all, z € Z there exist functions
ka(+; z) such that

k(u’ Z) = Z kd(ud; Z) = Z kc(zdu) :
d c

The left hand sum involves functions restricted to cliques of the first argument, whereas the right hand
sum involves functions restricted to cliques of the second argument. Then the following simple lemma
shows that there have to be functibgy(u., z¢) as claimed. |

Lemma 23 LetX be a set ofi-tupels andf;, g; : X x X — R for ¢ € [n] functions such thaf;(z,y) =
filzi,y) andg;(z, y) = gi(z, v:). f >, filzs,y) = Zj gj(z,y;) for all z,y, then there exist functions
hij such thatzl fz(.’I}“ y) = Zi,j hij ($i7 y])

e Proposition 22 is useful for the design of kernels, since it states that only kernels allowing an additive
decomposition into local functioris; are compatible with a given Markov netwogk Lafferty et al.

[2004] have pursued a similar approach by considering kernels for RKHS with functions defined
overZe = {(c,z.) : ¢ € ¢,z. € Z.}. In the latter case one can even deal with cases where the
conditional dependency graph is (potentially) different for every instance.

e An illuminating example of how to design kernels via the decomposition in Proposition 22 is the
case ofconditional Markov chainsfor which models based on joint kernels have been proposed in
Lafferty et al. [2001], Collins [2000], Altun et al. [2003], Taskar et al. [2003]. Given an input se-
quencesX = (X;).e[r), the goal is to predict a sequence of labels or class variables(Y;) (1,

Y; € X. Dependencies between class variables are modeled in terms of a Markov chain, whereas
outputsY; are assumed to depend (directly) on an observation wiNdom,,, . .., X¢, ..., Xiyr).

Notice that this goes beyond the standard Hidden Markov Model structure (cf. Rabiner [1989]) by al-
lowing for overlapping features (> 1). For simplicty we focus on a window size of= 1, in which

case the clique set is given By={c; :=(x¢, Y+, Yr+1), ¢} :=(e41, Y, Yr4+1) : t € [T — 1]}. We as-

sume an input kerndl is given and introduce indicator vectors (or dummy variafé3); ;1) :=

(1w (Y{t,t41}))w,rex- Now we can define the local kernel functions as

k(xs,xt) if c = ¢, andd = ¢,

111
kE(xsq1,2e41) fe=c,andd = ¢} (111)

kea(ze, Zfi) = <I(y{s,s+1})7 I(y{{t,t+1})> X {

Notice that the inner product between indicator vectors is zero, unless the variable pairs are in the
same configuration.

Conditional Markov chain models have found widespread applications, in natural language process-
ing (e.g. for part of speech tagging and shallow parsing, cf. Sha and Pereira [2003]), in information
retrieval (e.g. for information extraction, cf. McCallum et al. [2005]), or in computational biology
(e.g. for gene prediction, cf. Culotta et al. [2005]).

5.2.3 Clique-based Sparse Approximation

Proposition 22 immediately leads to an alternative version of the representer theorem as observed by
Lafferty et al. [2004] and Altun et al. [2004b].
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Corollary 24 If K is G-compatible then in the same setting as in Corollary 15, the optimfizzan be
written as

Z D> By D keallwic ye) ua) (112)

i=1 ceCy.€Y, dee

herezx;. are the variables of; belonging to clique: andY.. is the subspace &, that contains response
variables.

Proof According to Proposition 23 the kernglof H can be written a%(z,u) = Zc,d Eed(ze, ug)
plugging this into the expansion of Corollary 15 yields

ZZﬁM/ Z kcd xwayc Ud Z Z Z kcd xzcvyc Ud Z(Syc,ycﬁzy

i=1yeyYy c,dec i=1 ¢, deCy.EY.

Settingf3. . := >, dy..4.Bi, completes the proof. u

¢ Notice that the number of parameters in the representation Eq. (112) scales With. . |Y.|
as opposed ta - |Y] in Eq. (103). For cliques with reasonably small state spaces this will be a
significantly more compact representation. Notice also that the evaluation of funétipnsll
typically be more efficient than evaluatig

¢ In spite of this improvement, the number of terms in the expansion in Eq. (112) may in practice still

be too large. In this case, one can pursue a reduced set approach, which selects a subset of variables

to be included in a sparsified expansion. This has been proposed in Taskar et al. [2003] for the soft
margin maximization problem as well as in Lafferty et al. [2004], Altun et al. [2004a] for conditional
random fields and Gaussian processes. For instance, in Lafferty et al. [2004] para@iy—gtdnat
maximize the functional gradient of the regularized log-loss are greedily included in the reduced
set. In Taskar et al. [2003] a similar selection criterion is utilized with respect to margin violations,
leading to an SMO-like optimization algorithm (cf. Platt [1999]).

5.2.4 Probabilistic Inference

In dealing with structured or interdependent response variables, computing marginal probabilities of
interest or computing the most probable response (cf. Eq. (105)) may be non-trivial. However, for depen-
dency graphs with small tree width efficient inference algorithms exist, such as the junction tree algorithm
(cf. Jensen et al. [1990], Dawid [1992]) and variants thereof. Notice that in the case of the conditional
or hidden Markov chain, the junction tree algorithm is equivalent to the well-known forward-backward
algorithm Baum [1972]. Recently, a number of approximate inference algorithms has been developed to
deal with dependency graphs for which exact inference is not tractable (cf. e.g. Wainwright and Jordan
[2003]).

6 Kernel Methods for Unsupervised Learning

This section discusses various methods of data analysis by modeling the distribution of data in feature
space. To that extent, we study the behavio®f) by means of rather simple linear methods, which
has implications for nonlinear methods on the original data spackn particular, we will discuss the
extension of PCA to Hilbert spaces, which allows for image denoising, clustering, and nonlinear dimen-
sionality reduction, the study of covariance operators for the measure of independence, the study of mean

operators for the design of two-sample tests, and the modeling of complex dependencies between sets of

random variables via kernel dependency estimation and canonical correlation analysis.
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6.1 Kernel Principal Component Analysis

Principal Component Analysis (PCA) is a powerful technique for extracting structure from possibly high-
dimensional data sets. It is readily performed by solving an eigenvalue problem, or by using iterative
algorithms which estimate principal components. For reviews of the existing literature, see Jolliffe [1986]
and Diamantaras and Kung [1996]; some of the classical papers are Pearson [1901], Hotelling [1933],
and Karhunen [1946].

PCA is an orthogonal transformation of the coordinate system in which we describe our data. The new
coordinate system is obtained by projection onto the so-called principal axes of the data. A small number
of principal components is often sufficient to account for most of the structure in the data, e.g. for the
purpose of principal component regression [Draper and Smith, 1981].

The basic idea is strikingly simple: denote By= {z1,...,x,} ann-sample drawn fron(z). Then
the covariance operat6t is given byC' = E [(z — E [z])(z — E [2]) T]. PCA aims at estimating leading
eigenvectors of” via the empirical estimat€ernp, = Eemp [(# — Eemp [2]) (2 — Eemp [2]) 7], If X is
d-dimensional, then the eigenvectors can be computéx( i) time [Press et al., 1994].

The problem can also be posed in feature spaceti8opf et al., 1998] by replacing with ®(x).
In this case, however, it is impossible to compute the eigenvectors directly. Yet, note that the image of
Cemp lies in the span of ®(z1), ..., ®(x,)}. Hence itis sufficient to diagonaliz&.,,,, in that subspace.
In other words, we replace thlwuter productCe.,, by aninner product matrix, leaving the eigenvalues
unchanged, which can be computed efficiently. Using= Y. | a;®(z;) it follows that o needs to
satisfy PK Pa = \a, whereP is the projection operator witl?;; = 6;; — n~2? and K is the kernel
matrix onX.

Note that the problem can also be recovered as one of maximizing €omteast|f, X| subject to
f € F. This means that the projections onto the leading eigenvectors correspond to the most reliable
features. This optimization problem also allows us to unify various feature extraction methods as follows:

e ForContrast[f, X] = Varemp[f, X] andF = {{w, z) subject to]jw|| < 1} we recover PCA.

e ChangingF to & = {(w, ®(x)) subject to|jw| < 1} we recover Kernel PCA.

e For Contrast[f, X] = Curtosis[f, X] andF = {(w,x) subject to||w|| < 1} we have Projection
Pursuit [Huber, 1985, Friedman and Tukey, 1974]. Other contrasts lead to further variants, e.g. the
Epanechikov kernel, entropic contrasts, etc. [Cook et al., 1993, Friedman, 1987, Jones and Sibson,
1987].

¢ If Fis a convex combination of basis functions and the contrast function is conwerire obtains
computationally efficient algorithms, as the solution of the optimization problem can be found at
one of the vertices [Rockafellar, 1970, ®ttopf and Smola, 2002].

Subsequent projections are obtained, e.g. by seeking directions orthoggral dther computationally
attractive variants thereof.

Kernel PCA has been applied to numerous problems, from preprocessing and invariant feature extrac-
tion [Mika et al., 2003] by simultaneous diagonalization of the data and a noise covariance matrix, to
image denoising [Mika et al., 1999] and super-resolution [Kim et al., 2005]. The basic idea in the latter
case is to obtain a set of principal directions in feature spage. . , w;, obtained from noise-free data,
and to project the imagé(z) of a noisy observatiom onto the space spanned by, ..., w;. This yields
a “denoised” solutior () in feature space. Finally, to obtain the pre-image of this denoised solution

one minimize ‘@(m') — i)(:c)H. The fact that projections onto the leading principal components turn out

to be good starting points for pre-image iterations is further exploited in kernel dependency estimation
(Section 6.4). Kernel PCA can be shown to contain several popular dimensionality reduction algorithms
as special cases, including LLE, Laplacian Eigenmaps, and (approximately) Isomap [Ham et al., 2004].
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6.2 Canonical Correlation and Measures of Independence

Given two samplesX, Y canonical correlation analysis [Hotelling, 1936] aims at finding directions of
projectionu, v such that the correlation coefficient betweErandY is maximized. That is(u,v) are
given by

argmax Varemp [(u, x)]_l Varemp [(v, y>]_l Eemp [(t, 7 — Bemp [2]) (0,5 — Eemp [y])] - (113)

U,v

This problem can be solved by finding the eigensystemﬁ Cwycﬁ, whereC,, C, are the covariance
matrices ofX andY andC,, is the covariance matrix betweeXi andY’, respectively. Multivariate
extensions are discussed in [Kettenring, 1971].

CCA can be extended to kernels by means of replacing linear projegtions by projections in
feature spacéu, ®(x)). More specifically, Bach and Jordan [2002] used the so-derived contrast to ob-
tain a measure of independence and applied it to Independent Component Analysis with great success.
However, the formulation requires an additional regularization term to prevent the resulting optimization
problem from becoming distribution independent. The problem is that bounding the variance of each
projections is not a good way to control the capacity of the function class. Instead, one may modify the
correlation coefficient by normalizing by the normswéndv. Hence we maximize

el ™" lloll ™ Eemp ({42 = Bemp [2]) (v, — Eemp [y])] (114)

which can be solved by diagonalization of the covariance matgix One may check that in feature
space, this amounts to finding the eigenvector(sRKmP)% (PKyP)% [Gretton et al., 2005b].

6.3 Measures of Independence

Rényi [1959] showed that independence between random variables is equivalent to the condition of van-
ishing covariance&Cov [f(z), g(y)] = 0 for all C* functions f, g bounded byL., norm1 on X andY.

In Das and Sen [1994], Dauxois and Nkiet [1998], Bach and Jordan [2002], Gretton et al. [2005c¢], and
Gretton et al. [2005a] a constrained empirical estimate of the above criterion is used. That is, one studies

A(X,Y,F,9) :=sup Covemp [f(x), g(y)] subjecttof € Fandg € §. (115)
fg

This statistic is often extended to use the entire sefies. ., A; of maximal correlations where each
of the function pairg f;, g;) are orthogonal to the previous set of terms. More specifically Dauxois and
Nkiet [1998] restrictF, G to finite-dimensional linear function classes subject to thginorm bounded
by 1, Bach and Jordan [2002] use functions in the RKHS for which some sum df thad the RKHS
norm on the sample is bounded. Martin [2000], Cock and Moor [2002], and Vishwanathan et al. [2006]
show that degrees of maximum correlation can also be viewed as an inner product between subspaces
spanned by the observations.

Gretton et al. [2005a] use functions with bounded RKHS norm only, which provides necessary and
sufficient criteria if kernels are universal. Thatig.X,Y,,§) = 0 if and only if x andy are indepen-
dent. Moreovetr PK,PK,P has the same theoretical properties and it can be computed much more
easily in linear time, as it allows for incomplete Cholesky factorizations. Hgreand K, are the kernel
matrices onX andY respectively.

The above criteria can be used to derive algorithms for Independent Component Analysis [Bach and
Jordan, 2002, Gretton et al., 2005a]. In this case one seeks rotations of the daidX whereV €
SO(d) such thatS is coordinate-wise independent, iR(S) = Hle P(s;). This approach provides
the currently best performing independence criterion, although it comes at a considerable computational
cost. For fast algorithms, one should consider the work of Cardoso [1998§riigwn et al. [2001], Lee
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et al. [2000]. Also the work of Chen and Bickel [2005] and Yang and Amari [1997] is of interest in this
context.

Note that a similar approach can be used to develop two-sample tests based on kernel methods. The
basic idea is that for universal kernels the map between distributions and points on the marginal polytope
w:p — Eg p[é(x)] is bijective and consequently it imposes a norm on distributions. This builds on
the ideas of Fortet and Mourier [1953]. The corresponding distdfyeg)) := ||u[p] — 1[g]|| leads to a
U-statistic which allows one to compute empirical estimates of distances between distributions efficiently
Borgwardt et al. [2006].

6.4 Kernel Dependency Estimation

A large part of the previous discussion revolved around estimating dependencies betweerisantble

Y for rather structured spac#s in particular (83). In general, however, such dependencies can be hard
to compute. Weston et al. [2003] proposed an algorithm which allows one to extend standard regularized
LS regression models, as described in Section 3.3, to cases Whasecomplex structure.

It works by recasting the estimation problem dfaar estimation problem for the map: ®(z) —
®(y) and then as a nonlinear pre-image estimation problem for finglirgargmin, || f(z) — ®(y)| as
the point inY closest tof ().

Since®(y) is a possibly infinite dimensional space, which may lead to problems of capacity of the es-
timator, Weston et al. [2003] restri¢tto the leading principal components®fy) and subsequently they
perform regularized LS regression onto each of the projectionsk(y)) separately, yielding functions
f;. This yields an estimate gf via f(z) = >, v; f;(z). This works well on strings and other structured
data. This problem can be solved directly [Cortes et al., 2005] without the need for subspace projections.
The authors apply it to the analysis of sequence data.

7 Conclusion

We have summarized some of the advances in the field of machine learning with positive definite ker-
nels. Due to lack of space this article is by no means comprehensive, in particular, we were not able to
cover statistical learning theory, which is often cited as providing theoretical support for kernel methods.
However, we nevertheless hope that the main ideas that make kernel methods attractive became clear.
In particular, these include the fact that kernels address the following three major issues of learning and
inference:

¢ they formalize the notion dfimilarity of data

¢ they provide aepresentatiorof the data in an associated reproducing kernel Hilbert space

e they characterize the function class used for estimation via the representer theorem (see Eqs. (46)
and (112))

We have explained a humber of approaches where kernels are useful. Many of them involve the substi-
tution of kernels for dot products, thus turning a linear geometric algorithm into a nonlinear one. This
way, obtains gets SVMs from hyperplane classifiers, and kernel PCA from linear PCA. There is, how-
ever, a more recent method of constructing kernel algorithsm, where the starting point is not a linear
algorithm, but a linear criterion (e.g., that two random variables have zero covariance, or that the means
of two samples are identical), which can be turned into a condition involving an optimization over a large
function class using kernels, thus yielding tests for independence of random variables, or tests for solving
the two-sample problem. We believe that these works, as well as the increasing amount of work on the
use of kernel methods for structured data, illustrates that we can expect significant further progress in the
field in the years to come.
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